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A Discussion of the Re ection and

Transmission Coe cients for Wave

Packet Scattering o an Arbitrary
Potential Barrier
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Abstract

In this paper, we will derive the re ection and transmissioncoe cients for a Gaussian wave
packet to travel through an arbitrary potential barrier. These equations should be thought of
as the fundamental equations governing re ection and tramsission. We will show that our
equations reduce in the wide wave packets limit to the planehE re ection and transmission
coe cients derived for plane waves should be in tern thoughof as approximate value valid
for wide wave packets. We will extend this argument to arbitry wave packets and show how
to generalize the argument. We will then take as a special @the step potential and perform
a Taylor expansion of the re ection and transmission coe cents to derive approximate (but
more accurate then plane wave) expressions for the coe cisn We will then examine the
rectangular barrier potential and show that our expressiofor the re ection and transmission
coe cients are qualitatively di erent from those from the plane wave approximation. This
provides a good example of why our equations for the refeatiand transmission coe cients
should be thought of as fundamental.
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Chapter 1
A Derivation of the Re ection and

Transmission Coe cients

1.1 De nitions
We can characterize an arbitrary potential that we would lile a wave packet to scatter o as

20 X< 0
V(x) = S Vm(x) 0 x a (1.1)
Y/ X > a:
Here, we assume that the potential is zero untk = 0 and that it ends at some constant
value Vy asx = a. Other than that, it can do anything betweenx = 0 and x = a. Figure 1.1
shows a sketch of this potential for some particula¥;, (x).
We are interested in nding the energy eigenstates for thisqgiential. We will do this by
nding general solutions to the time independent Schrediger equation. For this potential,
x< 0
0 x a (1.2)
x> 0

wavefunctions have the form 8
2 Aeikx + Be ikx

k = S m(X)
- CcéX

>

|
1
é\ ! Figure 1.1: Here is a plot of the po-
A A tential de ned in equation 1.1. The
potential is O for values less than 0
and V, for values greater thana. The

L
L
L
L "
| "
L A4 1
/ n
L
potential is some arbitrary unspeci-
ed function for values in between.

V(x) 1

Vo

X
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with 2mV,
0 _ 2 2,
—— =k P~ (1.3)

2=k2

This is only a formal solution because we do not know what, (x) is. All we can say is that
it is some arbitrary solution to the Schredinger equation ér the arbitrary potential Vi, (X)

that ensures that both and ©are continuous. We can do quite a lot without actually
specifying exactly what . (x) is. We write the probability current for the incoming and

outgoing waves as

i~ @ @
T m ex  ox (4
For a plane wave with = Ae**, the probability current is
= SIAT (1.5)

Because the probability current must be conserved, the prability current for the incoming
wave must equal the probability current for the re ected andtransmitted waves:

~k 0 ~k ) -~ . .0,
mJAJ = mJBJ + mJCJ- (1.6)
This simpli es to

2 2
C
— =1 1.7
A (1.7)

B

— 4+ —

A Kk
1.2 Normalization of the Energy Eigenstates

Because  involves in nite plane waves, the particular normalization that we pick is in some
sense arbitrary. Will pick following normalizatiort

W= Pp= M ele™ (+ ) K (@ N e x @ (18

This convention is picked so that
Z

o kdx= (kK9 (1.9)

1 Here, we have de ned
0 x<0

()= 1 x>0

It follows that 8
20 x<O0

x) (a x):>1 O<x<a
"0 x>a

18



We can prove this as follows:

Z
ko(X) k(X)dX:
S e Die N (0 (0 () (@ 0F apel X (x 3)

e + %e )+ em(X) (X) (8 x)+ %éx (x a) dx: (1.10)

The primes onA® B C° and °are necessary because they are functionskofreally k°in
this case). Since the functions are orthogonal and square to themselves, we have

Z Z, Z

1 : o B .
ko(X) k(X)dX = — e'(k ko)xdx+ . e i(k+ ko)xdx

2 Zl 2 ZA

0 0

o 17 B Grioxgy s L BB a0 wxgy
2 1 AO 2 1 AOA
1 Z, 1 Z, coc .
X -
+ 2 0 k%m km dX + > ) AOAeI dx: (1.11)

The rst term is equal to (k k9=22 The second and third term are each proportional to

(k + k9. Since the eigenfunctions we are dealing with are only fandoming waves, all our
waves have positive wave vector. It must be thak + k®is positive so (k + k% = 0. The
second and third term integrate to 0. The fourth term is equalo (B°B=A°A) (k k9=2.
The sixth term is a more complicated. It is equal to

Z Z
171t coc 171t coc,
il X ~dl Mgy = e ( 92— (9%
7 . ATA S dx=e >, AOAe' dx (1.13)
Cc°cC ( 9
—a( 9
e AAT D (1.14)
0
- CC( %: (1.15)

- AOA 2
In the second step, we have changed variables fromto x + a. In the last step, the phase
was ignored since is is unity whenever the other terms havepgort. This simpli es to?3

ococ
—— 1.22
2 To prove this, we use the identity
141
(k K)= — &k gy (1.12)
2 1
3 To prove this, we need to write ( 9 interms of (k k9. We can do so using the identity
X (x x)
(g(x)) = | W (1.16)

19



Plugging all the terms in, we get

Z

(k k9,B°B (k K9,
2 AOA 2,
a 0COC (kK9

o rem km B R TS

ko(X) k(X)dX =

(1.23)

Since these delta functions are non-zero only whér= k% we can without loss of generality
replace the primed values in the coe cients with their unprimed values. We get

z z
_ (k_K),iBjP (kK9 : iCi> (kK9
k(X) k(X)dx = 2 + A2 2 + o kom kmdX + KiAZ 2
5 (1.24)
a
= (k kY+ om  km 0dX (1.25)

0

Our wave functions must be orthogonal in order for them to beraeigenstate of the Hamil-
tonian. For this to be true, it must be the case that

z

a
0 k6 kO

Here x; are the real roots ofg(x). To use this identity, we can think of %asg(x). The slightly confusing

thing is that we have been thinking of both and © as variables while the identity works with only one

variable. We will ‘think' of  as the variable and ©as a constant. When we do this, we note that the real
roots of our function arek = k®and k = k°

(p k2 2mVo=-2 P @ 2mVy=-2) (1.17)
(a(k)) (1.18)

_ (kK (k+ K9
"~ dg(k9=dk  dg( k9=dk’

« 9

(1.19)

Since we are only dealing with incident plan waves wheré is positive, the second part of this equation is
equal to 0. We can calculate the denominator of the rst term as

dg(k) _ 1 1
& P 2k (1.20)

I
=~
1

(1.21)
It follows that  ( 9=( =k (k KO9.

20



Figure 1.2: This is a plot of the
A real part of (x;0) dened in
equation 1.32. The plot also

£ h . ,%\ ,:_ shows V(x) on top of it. This
é‘  — = — plot is possibly misleading be-
\
\

causeV(x) and (x;0) have dif-
ferent units and are therefore not
comparable. They are simply
plotted on top of each other. The
scale of one can not be compared
to the scale of another.

d
a1t
a1
g
5
o
o HHE
<y

Furthermore, the value of this integral whenk = k°® must be nite. Thus, when k = k% we
havet 7

a
om  kmdX =1 +[nite value] = 1 (1.30)
0 ’ k= kO

We see that Z

a
om kmdx= (K K9: (1.31)
0

1.3 A Gaussian Wave Packet

We are interested in calculating the re ection and transmision coe cients of a wave packet
through an arbitrary potential. Because of its simplicity, we will rst work with a wave
packet that is Gaussian. We write our initial wavefunction a

(x;0)=( ?) Heholralg (rar=2 (1.32)

Our wave packet is centered at a in position space andk, in k space. Figure 1.2 shows a
plot of psi(x; 0) and a plot of V(x). We are interested in calculating lim;  (x;t). The

4We can make this argument a little bit more rigours by integrating this function in k space over an
in nitesimal range from k°  to k°+
Zyo, Z4 Z o, Z,

o kdxdk = (k K+ com km X dk (1.27)
ko 1 ko 0
Z.Z o

0 kO ’
The second term integrates to 0 for any wave function that is nite at all points. This will always hold so
long as the potential doesn't do anything funny like go o to in nity. By de nition then, we see that
z
X)) k()dx = (k k9: (1.29)
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fraction of the wave packet to the left ofx = 0 is the re ection probability and the fraction
of the wave packet to the right ofx = 0 is the transmission probability. To calculate this, we
will write out our wave function as a linear combination of tle energy eigenfunction. Then,
we will advance in time (by multiplying each eigenfunction by an energy phas. We will
be able to take the larget limit to nd the percent of the wave to the left and to the right.

1.4 as a Superposition of Energy Eigenstates

We are interested in writing (X; 0) as a superposition of plane wave states
Z
(x;0) = (k) k(x)dk: (1.33)

We have to solve for (k):
z
() Whekolbrde (T2 E o (x) (K)dk (1.34)

We can multiply each side by ,o(x) and integrate over allx:
z Z Z
W) 7)) Fekokr g (xra)*=2 fy — o(X) k(x) (K)dxdk (1.35)

= (K9 (1.36)

Here, we have used the orthogonality of they, Since there are no corresponding unprimed
variables, we can get rid of the primes in this equation

Z,

(= 7 e @r e ™ (0% ) () @ 0

%e“‘ (x a) dkolrag (xra)’=2 *qy. (1 37)

We can deal with the four terms separately. We assume that theave packet comes in from
far to the left sow  a. This means that the term exp( (x + a)?) has vanishing support
for x> 0. The rst term in the equation is

( 2) 1=4 4 1 ) . 2_5 2
= e kxgko(x+a)g (x+a)?=2 ( x)dx: (1.38)
1

Since the Gaussian has vanishing support for > 0, we can approximate this integral by
removing the ( x) term We have

( 2) 1=4 Z 1 ) . 2_5 2
- g kx gko(x+a)g (x+2a)°=2 < qy- (1.39)
1
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We make the change of variablex’= x + a

2\ 14 Z 1 2\ 14 Z 1
(_p;_— ei(koxo kx O+ ka)e x®=2 2dX0: eika(_p;_— ei(ko k)xoe x®@=2 2dxq (1.40)
1 1
Solving this integral, we nd that our rst term is °
2 14
— e k ko)* *2glka (1.41)

We can now deal with the second term. We can get rid of the( x) term since it is
equal to 1 when the rest of the integrand has support. What i%ft is the ordinary Fourier
transform integral which gives the k component of the original . But we assume that our
incoming wave packet has no left moving wave components anus this integral must be
058

The third and fourth terms both integrate to 0. This is becaus the exponential term in
the integrals have vanishing support fox > 0 whereas the (x) (a x) and (x) terms have
vanishing support forx < 0. The function has no support for all values. The integral nmat
be O.

From this, we see that

14

2 .
k)= — ek k) "2gha (1.42)

1.5 The Time Evolution of

We can write the wave function for our Gaussian wave packet any arbitrary time by
multiplying all the eigenstates in equation 1.33 by the phas associated with their time
evolution:

)= (k) k(x)e ER= (1.43)

£ 2= 1 B
_ - g (k ko)? ?=2gka P gkx 4 Ke ikx ( x)+
(1.44)

() () @ 0+ 28 (x a) e

5 Here we are using the identity
Z, r _—
e ax?+ bx gy = eb2=4a
1

5This is actually an approximation. The wave packet's distribution in k-space is Gaussian so there is
some amplitude for the packet to have anyk value{even negative values! The amplitude for the packet to
have a negativek values and therefore the Fourier component for the packet tobe moving to the left will
be negligible so long as the width of the wave packet ik space (roughly E ) is small in comparison to the
central value of k. This is a reasonable assumption of a well de ned wave packeahcident on the barrier.
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The rst term in this equation corresponds to the incoming wae. It dies out for larget.
The second term is the re ected wave.
R(X't) — — e i~k2t:2me (k ko)? 2ZZeika — e ikx ( X)dk (1 45)
) 4 A . .

The third term is the part of the wave in the potential V (x). It also dies out for larget. The
fourth term is the transmitted wave.
1=4 Z

2 . . Cc
Tt = e IHime (K0T T2ga L @X (x  a)dk (1.46)

1.6 The R Term

In order to calculate the re ection coe cient, we examine the re ected part of the wave
packet r(x;t). For larget, this wave will exist only for x < 0. We can remove the ( X)
term. If we make the substitutionx = X, we can now write r(X;t) as

YA eikx
r(X;t) = p? r(k)dk: (1.47)
We have
2 =2 B .
RGD = g IHPEIMg (k ko)® *=2gka A g dk: (1.48)
Therefore,
2 14 B
R(k) — o e i~k2t=2me (k ko) 2=Zeika K (149)
We write the re ection coe cient as
Z
R=1lm ] r(K)j? dk: (1.50)
2 1=2Z B 2
R= — e (k k)2 2 gk (1.51)

A

1.7 The T Term

In order to calculate the transmission coe cient, we examie the transmitted part of the
wave packet 1(x;t). For large t, the transmitted packet is entirely to the right of x = a

"Remember that when we make the change of variables, the limit of integration change. The limits are
changed back at the cost a minus sign.

24



nd we can remove the (x a) term. When we make the change of variables frork to
k2 + p?, we can write t(x;t) as

VA eikx
T(X1) = P 7(k)dk (1.52)
where
2 = i~(k2+ p?)t=2 (pk ko)2 2=2jk C i k
Y= — i~(k?+p?)t=2m 24p2 ko)? 2=24ka ~  qkx )
(X 1) RE e e e A € pﬁdk. (1.53)
Therefore,
2 = P_—— . C Kk
K)= e |~(k2+p2)t:2me ( k2+p? ko)? 2:Zelka ~ : 1.54
(k) A pk2—+p2 ( )
We can then write the total probability of transmission as
z
T=lm j 1(K)j? dk: (1.55)
For our wave packet, we have
227
2 1=2 p C? k2
= — ( K2+p?2 k)22 ~ % -
T e N |02dk. (1.56)
: P ——
We can then change variables back tk = = k2 p?
4 P
2 1=2 C 2 k2 p2
T= (k ko2 2 > - " dk: 1.57
e A K d (1.57)
We gef
2 124 .2 C?
T= — (ko)™ " 2 dk: 1.58
e KA (1.58)

1.8 Interpretation of Results

When we take the wide wave packet limit, our wavefunction appaches a plane wave with
wave vectorky. In this limit, we can approximate jC=Aj and jB=Aj by their value at k = ko.
When we do so, we nd that

IimR:E lim T =

t11 A t11 K (1.59)

8There is a one part of this derivation that | glossed over. A and C are functions ofk so they actually
change during our change of variables. Technically, we shadd probably denote them with a new name after
the change. But we then change variables back and thé and C term revert to their previous value. No
harm is caused by this omission.

25



These are what are typically called the re ection and transmssion coe cients R, and Ty for
wave packet scattering o a step barrier. We see that these ims are approximate and valid
in the wide wave packet limit whereas the equations we deriae exact.

Furthermore, equation 1.42 can be interpreted to shows thahe probability amplitude
for our wave packet to have wave vectok is

P(K)=j (k)j2=e & k"% (1.60)

For our Gaussian wave packet, we can write the re ection anddansmission coe cients as
z z

R= P(k)Rgdk T= P(k)Tkdk: (1.61)

These equations are just what we would expect. The re ectioooe cient of a plane wave is
just the sum (or technically integral) of the probability of the incoming wave packet having
a particular wave vector times the re ection coe cient for a wave having that wave vector.

1.9 Arbitrary Wave Packets

Our derivation of equations 1.61 was actually much less geakthen it need be. There is no
reason that we need to assume that the incoming wave packetGsaussian. Instead, we can
just say that there is some incoming wave packet(x;t) which initially is far to the left of

X = 0. Next, we write 7

(x;0) = k(X) (K)dk: (1.62)
So, 4
(k)dk = w (X 0)dx: (1.63)
It is still true that
P(k)=j (K)j* (1.64)

Although we cannot work out an analytic expression for (k), we can still carry through
with the calculations. Z

)= (k) k(x)e T (1.65)
Or,
Z
)= (k) k(x)e TO= (1.66)
Z
= 0 px € re™ (N W W@ X
(1.67)

+%eiX (x a) e !*rEmgy:
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Just like before, the re ected part of the wave function is
Z
1

r(X:t) = P (k) e K ( x)e IKE2Mgk (1.68)

A
Again, in the larget limit we can ignore the ( x) We can write this equation as
VA eikx
rR(X 1) = P> r(K)dk (1.69)

if we make the samex = x change of variables. We get
z

R0 1) = 912: (k) % e iHE2m gy (1.70)
We have B
r(K)= e ITKEIM () X (1.71)
As before 7 7 5 2 7
R=1lm ] r(KZdk= | (K)j? N P (k)Ridk (1.72)
We can do the same for the transmission term
1 £ C i X i~k2t=2m
1(x;t) = p? (k) A e€* (x a)e dk: (1.73)

In th% larget limit, we can ignore the (x a) term. If we make the change of variables from
kto k2+ p?, we can write 1(x;t) as
Z

eikx
T(%1) = P T(k)dk (1.74)
where
_ 4 i~(k2+p?)t=2m ka P——s C K .
T(k)=e P e 2+ P2 = P (1.75)
A k2 + p?
As before, 7 7 ) ) .o
— i . .2 — . T2 1 2\i2 et
T=lim j r(k)j"dk j ¢ 2+p9 pﬁ A K (1.76)
We can change variables back frork to P k2 p?. When we do so, we get
Z C 2 Z
T= | (k)j2E A dk= P(k)Tkdk (1.77)

Our derivation of equation 1.61 are perfectly general. Thelgold for an arbitrary potential
and an arbitrary incoming wave packet.
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Chapter 2

A Special Case { The Step Potential

In this section, we will discuss as a practical example thengplest example of a potential

barrier{the step potential
<
vz O X<0 2.1)
Vo x> O

This can be though of as the potential in equation 1.1 witla = 0. Our wave function is

B e i ( x)+ %éx (x) : (2.2)

() = 912: A

We know that and °must be continuous atx = 0. These conditions imply that

A+B=C KA kB = C: (2.3)
Or,
B k C 2k
AT k+ A k+ (24)
Therefore, the re ection and transmission coe cients acrss this step barrier are
2 1=2 Z - k 2
- (k ko)
R e i dk (2.5)
e 2 122 2 2 2%k ?
T= _ e (k ko)* #_ dk: 2.6
k k+ (2.6)

These equations have no analytic solutioh.Nevertheless, we can approximate the solution
by Taylor expanding the (B=A)? and (C=A)? factors aroundk = ko and doing each Gaussian
integral individually. Note that both equations are of the brm
2 1=2Z
G= — e (kK ko) *f (k)dk: (2.7)

LAt least, no obvious analytic solution.
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Expanding f (k) gets us

f Ok
f (k)= f (ko) + fYko)(k ko)+ ?20)(k Ko)? + ::: (2.8)
Plugging into the equation above gets
2 122 - f %ko)
G= — e (k ko) f (ko) + fAko)(k ko) + > (k  ko)?+ ::: dk:  (2.9)
The rst term in the integral is ?
2 1=ZZ
f (ko) — e (k ko) gk = f (ko): (2.10)
Sincex exp( ax?) is an odd function, we have
z 1
xe ®*dx = 0: (2.11)

1

The second term in the integral is 0. The third term in the intgral is®

2 1=ZZ 2 2
f%ky) — (k  ko)2e (& ko)* *gk: (2.12)
The third term in the integral is
11
572 f Qko): (2.13)
Our integral becomes
11
G = f (ko) + 55 Rko) + 1 (2.14)
For the T term, we have
c 2
f(kl)= = — 2.1
W= X (2.15)
2 We can calculate this by using the identity
Z, r_—
e ®dx=  —
l a
and change variables tox = (k ko).
3We calculate this by using the identity
Z 4 r
ax? _ 1
e * x%dx = 5 =

1

and doing the same change of variables as above.
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We can work out the derivatives of this functioti
c ? 4k

(0= % 1% Gy (2.16)
g = (r )+ 10 )(k jk . 2(k+ YL+ k=) 217
-4 +(ilf:)2 8 (2.18)
gy = (K )P8k= 4 ((k+ 2; K k)=" 8 (2.19)
A= E?fj 2;28k: 16 2.20)
10 ET g (2.21)

It follows that, including the rst non-vanishing correction, the transmission coe cient is
T %o o 2kg 8 ko o °1.

(ko+ )2 3 5 Ko+ o 2’
As was discussed in section 1.8, in the limit of large, the transmission coe cient reduces

to the classical formula.
The R term can be worked out in the same manner

(2.22)

B
f (k) = A (2.23)
k 2
= i (2.24)
_(k+ )22k )A k=) (ko )P2k+ )L+ k=)
fqk) = L (2.25)
4 k 2
= - i (2.26)
fogk_4k k 2+16 k 2 57
)= = k + 2 k+ (2.27)
4 16 Kk 2
st 2 ir (2.28)
Including the rst non-vanishing correction, we have
2 2
R= Koo, o, 8 ko "1 (2.29)

Ko+ o 0 6 kot o 2

“We use the fact that d =dk = k= .
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Chapter 3

Another Example: the Finite
Potential Barrier

3.1 The Eigenfunctions

We will now example the next most simple potential { the nite potential barrier. It is

de ned as 8
20 x<0
V(x) = >Vo 0 x a (3.1)
"0 x>a

We can solve the time independent Schredinger equation tand eigenstates of energi :

8
2 A" + Be ™ x< 0
= _De* +Ee™ 0 x a (3.2)
>
T Cekx X > a:

We can impose continuity of and °to nd the relationship of the plane wave coe cients.

A+B=D+E (3.3)

kKA kB=D E (3.4)

De'? + Ee '@ = cék@ (3.5)
De'a Ee'? = kCéke: (3.6)

We can combine equations 3.5 and 3.6 to get

D = %kéw ac (3.7)
E = Z—kei(k+ ac: (3.8)
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We can combine equations 3.3 and 3.4 to get
A=(k+ )D+(k )E: (3.9)
Using equations 3.7 and 3.8, we get

okt )k e KOV ke e -

Squaring gets us

JAJ? = (k;k Fe e (k4k Fa: (k:k Lo (k4k Fet jof Gy
_(k+ )+ (k ) 12;:2)2& )ZZCOS(Za)jCjz (3.12)
_ 2k +8K2 242 4+4k? 2 1(;12 24k2 2+2 M 28in2(a))jcjz (3.13)
= 1+u iCj%: (3.14)

42 2

Therefore, we calculate the transmission coe cient for a pine wave with wave vectok to
transmit across a rectangular barrier

C? 1

A " 1+(KZ Psin(a)=akz 2’ (3.15)

T |((rect) —

We have to be a little clear here about notation so as to avoidbafusion. | will refer to the
transmission coe cient for a plane wave of wave vectok for a potential step asTy and the

transmission coe cient for a plane wave of wave vectok for a rectangular barrier asKk Se“) .
(rect)

The same applies for the re ection coe cients. We can rewrig T, in terms of Ry and Ty:

1
T = : : 3.16
k 1 4Ry sin?(a)=T2 (3.16)
Using the fact that
T + R = 1; (3.17)
we see that , ,
ARy sin“(a)=T,
RV = k ,(2 )= Tk 5 (3.19)
1 4Rysin“(a)=T¢
10Of course, we could calculate the transmission term using tb equation
rec B 2
R = x (3.18)

and calculate the re ection coe cient explicitly, but it is  just more work and gets the same answer.
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— — Figure 3:1: . Here is a
A g \ schematic diagram of the
cute argument for deriving
the reection and trans-
mission coe cients for a
wave packet incident on a
—— rectangular barrier. There is
/\ 4_’/ EA some amplitude for the wave
to re ect or transmit at the
left side of the barrier. This
is represented by some part
of the wave transmitting and
A /\ some part re ecting. The
same thing happens at the
right side of the barrier and
so on. Some part of the wave
will be perpetually stuck in
the barrier and successive
parts of the wave will leave

AN /\_ on either side.

3.2 A Cute Argument

To calculate the actual re ection from the rectangular barrer, we must rst nd the mo-
mentum space representation of the incoming wave packet. Wan then write the re ection
as a Z

R= P(KR"™ dk: (3.20)

Although this integral is terribly ugly, it is the exact expression for the re ection of a wave
o of a rectangular barrier.

There is a cute argument that can be used to derive this sameeetion and transmission
coe cients for the rectangular potential. We imagine the ircoming wave as a localized packet
moving to the right. Suppose that its wave vector distributon is centered onky. This is
shown in gure 3.1. When the wave arrives at the left of the pantial, there is some
amplitude for it to re ect into the barrier and some amplitude for it to transmit through
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the barrier. These coe cients are, at least approximatelyjust the plane wave coe cients
for a plane to transmit through a step potential. Next, thereis some amplitude for the wave
packet which transmitted the rst time to re ect o the barri er on the right and then to
transmit through the barrier on the left.? This would add a term Ty, Ry, Tk, to the re ection
probability. Of course, there is some amplitude for the wavi® transmit the rst time, re ect

o the barrier on the right, re ect o the barrier on the left, re ect o the barrier on the
right, and to nally transmit through the barrier on the left . This will add a term Ty,R? Ty,
to the total re ection. The total re ection will be a sum of all the possible ways that the
wave could be re ected:

RO@) = Ry + Ty Ry Ty + TioRE Tio + 11 (3.21)
= R + R TA(L+ RZ + RY + ::2) (3.22)
= 2Rko:(1 + Rko): (323)

Of course, this expression will not valid generally becausd# many of the objects brought
up earlier in this paper about using plane waves to calculatee ection and transmission

coe cients. But it should be valid under certain assumptiors which we can write formally.

In particular, we insists that the wave packet is su ciently close to a plane wave. This is
true when the width of the wave packet ink space is su ciently narrow:

kK ko (3.24)

We also require that the wave wave packet is su ciently narrav in comparison to the square
barrier that it interacts with only one side of the barrier atany one time:

a w 1= k (3.25)
Formally, we expect this expression for the re ection coe ¢ent to be valid when
1=a kK ko: (3.26)

We can prove that the exact result for the re ection coe ciert (equation 3.19) will reduce
in the proper limit (equation 3.26) to equation 3.23. We have
Z

in2 =72
R= P 4Ry sin“(a )=T¢

1 4Ry sin*(a)=T?

dk: (3.27)

First, we note that the limit holds only when the average engy of the incoming beankj is
large. This is true only whenRy, 0 andTy, 1. In this limit, the denominator is just 1
and we can ignore the other factor of:

Z

R=  P(k)4R,sin?( a)dk: (3.28)

2This argument is a bit lacking because we have not worked outhie re ection and transmission coe cients
for a plane wave going the other way across a potential step.tlis completely trivial to work it out and it
turns out that the re ection and transmission coe cients ar e exactly the same.
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To good approximation, we can model the incoming wave packet k space as relatively
constant over some range frorkg k to ko + k. The probability is

8
20 k<kp k
P(k) = S 1=2 k Ko k k ko+ Kk (3.29)
"0 k>ko+ Kkt
Our integral becomes 7
ko+ Kk
R = —— 4Ry sin*( a)dk: (3.30)
kO k 2 k

In the limit k ko, we know that Ry and T, do not vary substantially over our integral
range and can be taken outside of the integral and replacedtiwitheir value at ko:

1 Z ko+ k
R=4Ry,—— sin’( a)dk: (3.31)
2k «
Sincea 1= k, the function sin(a) oscillates many time ask varies from kg k to

ko + k. We may carry out the integral by multiplying the width of the integral by the
average value 1/2 of sin squared:
1 1
R = 4RkOﬂ 2 k§ =
Of course, this is not exactly the same as equation 3.23 dexd/ using the cute argument.
But since that formula is only valid in the large ko limit, that equation also approaches
2Ry,. The formalism introduces in this paper correctly predictghe re ection coe cient for
the rectangular potential. We can also understand where th2R,, comes from in an even
more intuitive way. Refer back to gure 3.1. Since theRy, term is small, we see that the
only appreciable terms which will contribute to the re ection of the plane wave are the rst
re ection Ry, 0 the left part of the barrier and the term where the wave paclkt transmits,
re ects, and transmits. It has a value Ty, Ry, Tk, Rk,- Any of the higher order terms
require at last three re ections and will be negligible, sotte total re ection is approximately
2Ry, .
On the other hand, if we naively used the plane wave approxirian for a plane wave of
wave vectork, we would have though that the re ection coe cient was

ARy, Si( oa)=T2
1 4Ry, sin’( 0a)=T2 "
Of course, taking the same limits as in equation 3.26, we ndhe denominator to again

be approximately 1 and can again ignore th&,, term. But even so, we would predict the
re ection probability to be

2Ry, (3.32)

(rect) _
R, =

(3.33)

RIY 1 4Ry, sin?( od): (3.34)

This function oscillates from 0 to Ry, and is qualitatively di erent from the exact result
derived above. We see that this the plane wave approximatios qualitatively di erent in
this case from the exact result.
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Part |11

A Theoretical Discussion of Crystal
Di raction and an Experimental
Investigation of Microwave Di raction
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Abstract

We will describe the theory of crystal di raction. We will then describe the theory of powder
di raction. The theoretical discussion in this paper and seeral of the gures closely follows
chapter 6 of B]. We will then describe an experimental investigation intarystal di raction
that was done using the Pasco microwave optics kit.
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Chapter 4

Crystal Di raction

4.1 The Bravais Lattice

Crystals are very regular structures. A Bravais lattice is amathematical device used to
describe the regularity and self similarity of a crystal. A Bavais lattice is an array of lattice
points. Each lattice point's position is of the form

R = n;a; + n,a, + nias: (4.1)

Here, ay, a,, and a3 are three linearly independent basis vectors and; n,; n3 can be any
possible integer.

The simplest Bravais lattice is the cubic lattice. It represnts a cubic crystal structure.
A lattice cell of this structure is shown in gure 4.1. The latice vectors are de ned as:

a; = ag; a, = ay, as = a?: (4.2)

There are two other very common Bravais lattices. Once is thiace-centered cubic lattice.
It is a cubic lattice where each side of the cubes have a lagigoint in the middle. A

Figure 4.1: The cubic lattice. This
is the simplest Bravais lattice.
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face-centered cubic lattice is shown in gure 4.2a. We cangh as a set of Bravais lattice
vectors:

ar= 5(%+2); az= 5(2+R); as= SR+ 9): (4.3)

These are labeled in the gure. The other common structure ighe body-centered cubic. It
can be thought of as a cubic lattice where each cube has anathedtice point in the middle
of it. Part of this crystal is shown in gure 4.2b. We could pi& as our set of Bravais lattice
vectors |

a; = aR a,= ay as= SR+ ¢+ 2). (4.4)
But there is a more useful set of Bravais lattice vectors
ar= 5($+2 R) a,=5(2+% ¥), az= SR+y 2): (4.5)

These vectors are shown in the gure.

(a) A cubic cell of the face-centered cubic lat- (b) A cubic cell of the body-centered cubic lattice.
tice.

4.2 The Reciprocal Lattice

We will introduce the reciprocal lattice. It will be an important tool in discussing crystal
di raction. The reciprocal lattice for a Bravais lattice is as all wave vector9Q that have the
periodicity of a Bravais lattice. Mathematically, this means that

dQU+R) - JQr (4.6)
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for all R in the Bravais lattice. This condition is equivalent to

QR =1 (4.7)

The reciprocal lattice is also a Bravais lattice so so a recipcal lattice is generated by

reciprocal lattice vectors. We can construct reciprocal tace vectors from Bravais lattice
lattice vectors as follows

d, ads ds dj a; ao
b = 2 b :2 S b = 2 _ 48
! a: (a2 as) 2 a; (az as) a; (az as) (48)

Then, any vector in the reciprocal lattice vectorQ can be written as

Q = by + by + bs: (4.9)

We can prove that this vector satis es equation 4.7 as follosv Sincea, aj is normal to a,
and as, it follows that a, b; = az b; = 0. Furthermore,

a; as
ai b]_: a; 2

a (a; ay) - (440
It follows that*
bi aj=2 j: (4.12)
For any Bravais lattice vector of the formR = n;a; + n,a, + nzaz we have
Q R=2qini+ Ny + g3 (4.13)

from which it follows that equation 4.7 is only satis ed if ard only if q;, ¢, and ¢ are all
integers. From this, we see thab,, b,, and b are reciprocal lattice vectors.

As an example, we can determine the reciprocal lattice vectofor the body-centered
cubic lattice from equation 4.5. The denominator of equatin4.8 is

a1 (a2 asz)= 3($+2 R) [J(2+% ¢) SR+y 2)=a’=2 (4.14)

! Here, we use the identity

a; (a2 az)= az (a2 ai)= asz (a1 an):

(4.11)
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We calculate each of the terms

dz as

by =2 a (@ ay (4.15)
5 S+ 2% 9;322(3% +¢  2) (4.16)
= 2.(9+ 2) (4.17)

_ as ag
by, =2 a (@ ay (4.18)
_, 3R+ ¢ z;szg(y +2 R) (4.19)
=2 (2+2R) (4.20)

_ a, az
by =2 a (@ ay (4.21)
_5 29+ 2 *;323(2 +R Y (4.22)
=Z@RR+¥): (4.23)
(4.24)

The reciprocal lattice for a body-centered cubic crystal ia face-centered cubic lattice. It
is also true that the reciprocal lattice for a face-centeredubic is a body-centered cubic.
The easiest way to see this is to note from the symmetry of edi@n 4.7 that the reciprocal
lattice of a reciprocal lattice is the original Bravais latice.

4.3 Crystal Diraction

NN A

dsin( )

Figure 4.2: The Bragg condition for con-
structive interference and therefore inten-
sity maxima. We divide the crystal into

Bragg planes. Bragg said that there would
be constructive interference where the light
re ected o the Bragg planes was in phase. |

—0 —>

Crystal diraction is an important way to learn about the int ernal structure of matter.
Bragg proposed a rather unphysical model to explain wave daction o crystals. He said
that we can divide a crystal into Bragg planes. This is showmi gure 4.2. We can think of
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the incoming waves as scatter o of the Bragg planes. There lbe construcive interference
only when the light leaving the Bragg pleans is in phase. Theondition for constructive
interference is knwon as Bragg's Law:

n =2dsin: (4.25)

Here, d is the distance between Bragg planes andis the incident angle of the waves. This
condition holds for any integraln. There are many ways of dividing up a crystal into Bragg
planes and each one can lead to diraction peaks.

Figure 4.3: This gures shows

Rcos = k° two atoms separated by a Bravais
lattice vector R. This diagram
KO shows the path di erence taken by
| | > two beams of light that diract
Rcos °= R n° through the crystal.

The Von Laue approach to studying di raction is more physichbut leads to the same
conclusion. We models crystal scattering by having wavesaster o of each atom in the
crystal separately. The condition for constructive interérence is that the path di erence of
the waves for all the atoms is only di erent by integers time he wavelength. Constructive
interference for a particular pair of atoms seperated by a Bvais lattice vectorR is shown
in gure 4.3. Two beams of light enter from the top, are scatteed by the atoms, and leave
to the right. Our beam is monochromatic so the incoming wavdsave the same momentum
k. We assume that the di raction is elastic so the waves all lea with the same wave vector
(ik9 = jkj).

The path di erence is

Rcos + Rcos °= R (A nY: (4.26)

The Von Laue condition for constructive interference is tha

R (" nY=m (4.27)
for some integem. If we multiply by 2 = , we get
R R Ry=2m: (4.28)
Or,
gk’ R - 1. (4.29)

a7



This condition must hold for all Bravais lattice vectorsR, Q = k° k must be an element
of the reciprocal lattice.

We can prove that this condition is equivalent to Bragg's law Since our beam is
monochromatic, jkj = jk9. From this, it follows that k = jk  Qj. Squaring both sides
of the equation

k?=jk Qj? (4.30)
K=K 2k Q+ Q? (4.31)
k Q= 3Q? (4.32)
k Q=1 (4.33)

the component ofk parallel to Q is exactly half way along the reciprocal lattice vectoQ.
k must lie on a plane which is the perpendicular bisect &. This is a Bragg plane. This is
shown in gure 4.4.

— EQ\I
\ -0
k

Figure 4.4: This diagram show®) = k° k
whenk = k°

Figure 4.5: This gures shows gure 4.4. \k/
with k® moved onto the Bragg plane and |

the head of k moved onto the head of <Q\k°k A

k® This diagram shows that we can think !

of diraction as being re ected o some K <
plane in the crystal. We see from this g- Tk ‘:

ure that the incident and re ected angles

are equal. /

Now, redraw gure 4.4 by moving the reciprocal lattice vecto k° onto the Bragg plane
and movingk onto its head. This is shown in gure 4.5. Here, the angle betenk and the
Bragg plane andk® and the Bragg plane must both be . Furthermore, for Bragg planes a
distanced apart, the reciprocal lattice vectors parallel to them all lave distances of the form
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Q =2 n=d with n an integer. From the diagram, we see tha@ = 2k sin( ). Using this, we
have
ksin = n=d: (4.34)

Sincek =2 = , we derive Bragg's law.

4.4 Visualization of Diraction

Figure 4.6 The Ewald sphere con-
struction. We draw the incoming wave
vector k starting at some reciprocal lat-
tice point. We draw a circle of radius
k centered at the head ofk (really,
it should be a sphere). If the Ewald
sphere intersects some other reciprocal
lattice point, we can draw a new vec-
tor k°from that point to the center of
the circle such thatk  kCis in the re-
ciprocal lattice. This is the condition
for light to preferentially scatter. So,
whenever the Ewald sphere intersects
a reciprocal lattice point, we will have
constructive interference.

We introduce a new construction called called the Ewald spteto help think about
di raction. Figure 4.6 show a diagram of an Ewald sphere. Wedgin by placing the tail of
the incoming wave vector on a reciprocal lattice vector. Wehen draw a sphere of radiugk|
centered on the head ok. This is called the Ewald sphere. Whenever another recipralc
lattice vector intersects the Ewald sphere, we can draw a rected vectork® that begins
at the other reciprocal lattice vector and ending at the heawf k such that k® k is in
the reciprocal lattice. This is the condition for construcive interference. So only when a
reciprocal lattice point intersects that Bragg plane will here be constructive interference,
and we can use the Ewald construction to determine the anglé scattering.
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Chapter 5

Powder DI raction

Although a presentation of powder di raction will not be nealed for the following discussion
of microwave optics, it will be discussed here because ofyides a background for the powder
di raction software part of my plan.

Reciprocal lattice points

Ewald Sphere

@) (b)

Figure 5.1: These gures show the Ewald sphere for powder daction. Because powder
di raction is diraction o of many small crystals with die rent orientations, there can be
constructive interferences for reciprocal lattice vectsrrotate at any angle. In these gures,
we draw an Ewald sphere and then one particular reciprocalttece vector Q which is rotated
through all possible angles. The intersection of these tw@lseres leads to constructive
interference (sinceQ = k k9. Therefore, for each reciprocal lattice vector there wilbe
associated scattering in a cone. ds the angle betweerk and k°

Our previous discussion of crystal di raction assumed thathe crystal that we are imag-
ing represents a Bravais lattice and is self similar over werdarge distances. But powder
di raction is di erent because what is imaged is a crystallhe powder, where there are many
pieces of crystal which are large on a microscopic scale butadl on a macroscopic scale.
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Powder di raction is achieved experimentally by grinding acrystal with a mortar and pestle
until it is very ne.

When we perform di raction on a powder, we e ectively scatte some light o of crystals
with every possible orientation. This corresponds to cryats with reciprocal lattice vectors
that are rotated in all possible directions.

We can draw an Ewald sphere to analyze this situation. The rean why our Ewald
sphere is dierent is because each reciprocal lattice vectaill generate a sphere (with
di erent points on the sphere corresponding to di erent crgtals in the powder). The Ewald
sphere will intersect the sphere of one of th reciprocal late vectors in a circlé Figure 5.1
shows a gure of these two spheres.

This circle of intersection will correspond to a cone of liglemanating from the scattering

powder. The scattering angle 2can be calculated from gure 5.1b as follows. Since we have
drawn an equilateral triangle, it must be that

cos = Q=2 (5.1)
k
Or,
Q = 2ksin(2=2): (5.2)
Sincek =2 = , we have
Q= 4L(2:2) (5_3)

Therefore, if we know the magnitudes of the reciprocal latte vectors for a particular crys-
tal, we can use equation 5.3 to calculate the scattering amgl that would be found when
performing powder diraction. Alternately, we could measue the scattering angles due to
powder di raction and use those to calculate the magnitude fahe reciprocal lattice vectors
of the crystal. These values often be used to reconstruct thstructure of the reciprocal

lattice and subsequently the actual Bravais lattice. Powdedi raction therefore provides an

experimental technique to determine the structure of crysis.

The primary purpose of the diraction software that was written as part of this plan is
to infer the Q values from powder data by measuring the scattering angieThe reason why
the software is so complicated is because what is directly aseired experimentally is an area
di raction pattern. The cones of light intersect the area déector in conic sections and it is
di cult in practice to work from the area data to a list of Q values. We will explain how we
can use the list ofQ values to determine the crystalline structure of some powdesample.
For example, below is a a list of the crystal Lanthanum Hexabmle's Q values

1This only happens for reciprocal lattice vectors smaller tren .
2Actually, all the program really does is produce a plot of intensity as a function of Q and another
program must be used to calculate the actualQ values based on the peaks of the intensity plot.
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Figure 5.2: A picture of of a face-centered cubic Bravais kde. On top of many of the
lattice points is the distance to the lattice point from the lottom left lattice point if the
space of a lattice cube is 1.

1.511543809 = /07 2:137646823 1=2 2:137646823
2.137646823 = D00 2:137646823 = D 1 2:137646823
2.618102966 = P25 2:137646823 %=g 2:137646823
3.023087619 = U14 2:137646823 D ~ 2 2137646823
3.379873753 = B81 2:137646823 ?)=g 2:137646823
3.702525225 = 1732 2:137646823 3 2:137646823
4.275148198 = D00 2:137646823 D 2 2:137646823
4534631428 = 421 2:137646823 %=g 2:137646823

4.77990514 = 236 2:137646823 P 5 21137646823
5.013313099 = B45 2:137646823 11=2 2:137646823

5.23603139 = 2449 2:137646823 D 6 2:137646823

5.44989618 = 549 2:137646823 13=2 2:137646823

These Q values are given in units of inverse angstrom. If we examinéd ratio of the
Q values, we see from gure 4.2a that it is the same as the ratidf ¢he lengths of the
face centered cubic Bravais latticé. It must be that the reciprocal lattice is face-centered

SActually, 1 suspect that this list of Q values did not come from real data because the numbers come
out a little too perfect. | was given these Q values to use during di raction image calibration. These vaues
are used to measure parameters of the experimental setup whe_anthanum Hexaboride is imaged. These
values are probably calculated based on our best guess at whthe lattice spacing is because that is what
the data should be calibrated o of. Presumably, experimentlly measuredQ values are not quite so nice.
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cubic with a cubic cell of width 2137646823A. This means that the Bravais lattice is
body-centered cubic with a cubic cell of width D3A.
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Chapter 6

Microwave Optics

N 7

(a) The Pasco microwave transmitter. This pic- (b) The Pasco microwave receiver.
ture is from [10). This picture is from [10)].

Figure 6.1:

Because of Bragg's law, to measure a crystal with spacing afier d, one must use light
whose wavelength is of similar size. This is so the scattegimngle is neither too large nor
too small. Typically, x-ray diraction (wavelength of order 1 angstrom) is used to study
solids who's crystalline structure typically is of order 1 agstrom.

Pasco Scienti c manufactures an experimental kit that can & used to study di raction at
a much di erent scale. It creates electromagnetic waves irhé microwave spectrum. Pasco
claims that their transmitter produces microwaves of wavehgth 2.85cm. Because of this,
the crystal that should be diracted should have a charactastic spacing of centimeters,
which is easily visible and constructable.

To realize this experimentally, the Pasco microwave di raiton kit comes with a trans-
mitter, a receiver, a goniometer, and a rotating table. Figres of the transmitter and receiver
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(a) The goniometer. The circular middle

allows for the measurement of the angle
between the arms. The transmitter and

the receiver can slide directly onto the
two arms. This picture is from [10.

Figure 6.3:

ment setup. Here, the re-
ceiver and transmitter are
attached to the arm of the
goniometer and the rotat-
ing table is placed on the

middle of it.

talline structure is placed

on top of the
ture from [10).

Figure 6.2: The cubic lat-
tice that came with the
microwave diraction Kkit.
The cubic lattice contains
100 metal spheres. It is a
5 5 4 array. Picture
from [10].

The equip-

The crys-

table. Pic-
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(b) The rotating table. This table ts
on top of the circular middle of the go-
niometer. A crystalline structure can
be placed on top of it. This picture is
from [10).




are shown in gure 6.1. Figures of the goniometer and rotatmtable are shown in gure 6.
The goniometer acts as a base which attaches the transmittéw the receiver. The middle
of the goniometer holds the rotating table and on top of that ests the crystalline structure
which will be images. A gure of the crystalline structure wiich the Pasco microwave optics
kit comes with in shown in gure 6.2. Itisa5 5 4 cubic structure. A gure of the total
assembly is shown in gure 6.3.

Using this experimental setup, we can pick a particular Brag plane and measure the
intensity of the scattered microwaves as a function of angle just as in gure 4.2.

The particular experiment that done using the microwave opts kit involved measuring
the di raction o of the (100) plane shown in gure 6.4.

(210)
///’ /1(110)
R PPN Qi S
//Q/ (100)
e e, ~g--0-r----
0/8 & o o . .
g{/ﬁ/o 0 o Figure 6.4. Several possi-
74 s o o o ble Bragg planes for a cubic
e crystal. Picture from [10].

T, T
title

Intensity

Figure 6.5: The inten-
. sity as a function of scat-
tering angle o of the
go (100) plane shown in g-
ure 6.4.

Figure 6.5 shows a plot of the diraction data that was colleted using the experiment.
There is reason to believe that all of the data for below about 15 degrees should not
be believed because the intensity that is recorded is comifiggm microwaves which don't
di ract at all but instead go directly through the crystal. For above about 15 degrees, we
see that there are three diraction peaks at 18 23, and 50.
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According to Pasco, the characteristic atomic spacing of ik crystal is 3.8cm and the
wavelength microwaves are 2.85cm. From this, it follows thave should see diraction
peaks at 22 and 49. The diraction peak at 18 evidently came from di raction o of a
di erent crystal. The other peaks are in good agreement witlthe theory.
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Part IV

Area Di raction Machine Manual
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Chapter 7
Tips and Tricks

7.1 Calibration

The \ Calibration " tab can be used to load diraction data into the program. Thetab
can be used to calibrate diraction data to determine the exprimental parameters that
characterize the experiment. The data can be loaded usingeghData File: " input. The
program recognizes tar2300, \ mar3450, \ mccd, and \tiff ", and \ edf" data. Multiple
les can be loaded into the program by selecting multiple le with the le selector. The
sum image will be used.

This program characterizes a di raction experiment accolidg to the parameters:

\xc: ", \'yc: " - the x andy coordinates on the detector where the incoming x-ray beam
would have hit the detector were there no sample in the way (ipixels).

\d:" - the distance from the sample to detector (in mm).

\E:" - the energy of the incoming beam (in eV).

\alpha: ", \ beta: " 2 tilt parameters of the detector (in degrees).

\R:" - the rotation of the detector around the center (in degreés

\pl: " - the pixel length of the image. The width of one pixel (in micons).
\ph:" - The pixel height of the image. The height of one pixel (in narons).

Before calibrating an image, three things must be done. Firghe calibration data must be
loaded. Second, & data le with the standard Q values for the sample must be loaded.
Third, an initial guess of the calibration parameters must b loaded. This can be done with
the \ Parameters” inputs. A decent guess at the calibration parameters can s@etimes be
found in the header of a diraction le. These values can be aded into the program using
the \Get From Headé€r button to. The \ Do Fit" button will perform the calibration and
nd a best guess at the real experimental parameters.
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The \Work in Lambdaselection in the \Calibration " menu can be used to switch the
program to work with the x-ray's wavelength instead of its eargy. The relationship between
these values i€ = hc= . The calibration parameter \E:" will be replaced with \ :" and
the current value will be converted.

The \Q Data" input can be used to load in standardQ data les. This program
stores several standar®@ les. The can be selected through the $tandard Q' menu in the
\ Calibration " menu.

The calibration t can be modied in a couple of ways. The calbration algorithm will
look the di raction data to nd diraction peak. It does so by running from the center of
the image out. The number of peaks that the program tries to d can be set with the
\Number of Chi? input. This tells the program how many of these radial slice from the
center of the image should be done. TheStddev?" input tells the program what ratio
higher the peak must be then the standard deviation of the b&ground near the peak in
order for the peak to be considered real. The higher the valuhe more picky the program
is about nding legitimate peaks.

If some of the experimental parmaetesr are known exactly, phing the \Fixed?" check
box will x the associated variable so that it will be not re ned when tting. The pixel
length and pixel height can never be re ned so this does not ply for them.

To see how good the current calibration parameters are at atacterizing the loaded data,
the \Draw Q Lines? check box can be used to make the program draw on the di raain
image lines of constantQ speci ed by the Q data le. The Q ranges specied in theQ le
can also be drawn using theDraw dQ Lines? check box. The \Draw Peaks? check box
can be used to display on top of the di raction image all of thgpeaks that were found while
doing the t.

The diraction image can be zoomed into by left clicking in tle image, dragging the
mouse, and then releasing. The image can be zoomed out of kghticlicking on the image.
The image can be panned across by shift clicking on the imagedadragging. The image
can be made bigger or smaller by resizing the window.

In the le menu, the \ Save Imagé option can be used to save the current di raction le
in several popular image formats. The image will be saved Withe current zoom level and
any Q lines, Q lines, peaks, or masks drawn on top of it.

7.2 Masking

The program can ignore certain pixels in an image when perfomg di raction analysis.
This is done on the Masking' tab. Threshold masking can be used to ignore pixels above
or below a certain value.

All pixels larger than a certain value can be ignored by cherilg the \Do Greater Than
Mask? check box and specifying the value in the (Pixels Can't Be) Greater Than
Mask:" input. All pixels less than a certain value can be ignored bghecking the \Do Less
Than Mask? check box and specifying the value in the (Pixels Can't Be) Less Than
Mask:" input. The overloaded or underloaded pixels will show up aa di erent color on the
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di raction and cake displays. That color can be specied by he color inputs next to the
check boxes. When a threshold mask is applied, masked pixaldl not be used during an
intensity integration.

The program can mask certain areas of the di raction image usy polygon masks. The
\Do Polygon Mask? check box will enable polygon masking. Any masks in the progm
will be displayed over the diraction data and cake data. Anymasked pixels will not be
used during an intensity integration. The \Add Polygori' button can be used to draw new
polygon masks. To draw a mask, simply push the button, then fieclick all the nodes on
the diraction image except the last one, and nally right click the nal node. This will
create the polygon. The Remove Polygohbutton can be used to remove polygons from
the diraction image. Simply push the button, then click on the polygon that should be
removed. The \Clear MaskK' button will remove all the polygons form the program. The
\ Save Mask button will save all the polygons in the program to a le. The\Load Mask
button will load into the program all of the polygons in a le.

7.3 Caking

A caked image is a plot of diraction data inQ vs space. is a measure of the angle
around the incoming x-ray beam. By convention, is equal to O degrees to the right of
the center of the image. It increases in a counterclockwis@ettion. The program needs to
know a range and bin size iQ and in order make a caked plot. the Do Cake button
will create a caked plot of the data. The program will presena new window with the caked
data in it. The caked window can be interacted with just like he di raction window. Any
Q lines, Q lines, and peaks that are drawn on top of the diraction imagewill also be
displayed on top of the cake image. Th® and Q lines are just vertical lines on the caked
image. The \Save Datd button will save a caked plot as plain text. The \Save Imagé
button will save the caked plot as a popular image format. Thenage will have anyQ lines
or peaks saved drawn on the caked plot saved on top of it.

The \Do Polarization Correction? " button will apply a polarization correction to
the caked plot. The polarization of the incoming beam can beeci ed with the \ P?" input.
The formula for calculating the polarization correction is

|
PF

Im=PF (7.1)
P(1 (sin(2)sin( 90)»+(@1 P)A (sin(2)cos( 90))? (7.2

with Im the measured intensity.

There is a convenient button called AutoCake' which automatically picks the smallest
cake range so that the whole image shows up in the cake. It th@ick the bin size so that
each pixel displayed on the screen is a single bin. It then @kthe data. This button can
be used to quickly make a good cake.
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7.4 Integrate

An intensity integration is a plot of average intensity vsQ, , or 2 . By default, the option
is to integrate in Q or . The \Work in 2theta " select in the le menu can be used make
the program integrate in 2 instead of Q.

The program needs to know a range (both a lower and upper vajuand a bin size in
order to perform an intensity integration. When these valug are loaded, the Integrate "
button will perform an integration. A new window will open up with the data in it. By
default, the integration will be over all possible values dthe other variable. For example,
if you integrate in Q, it will be over all . This can be changed using the constraint check
boxes.

For example, selecting the Constraint With Range on Right? " check box and setting
the \Chi Lower?' input to 0 and the \ Chi Upper?' into to 90 will cause the integration in
Q to be only of pixel values with values between 0 and 90.

Just like a caked plot, a polarization can be applied duringraintensity integration. The
\ Save Datd button can be used to save out the intensity integration daa as two column
ASCII.

7.5 Macro

Macros can often be used to greatly speed up the data analysihe \ Start Record Macro"
option in the \ Macrd' menu will begin recording a macro. After the desired tasksdve been
recorded, the \Stop Record Macrd option will stop the recording and save the commands
to a le. The \ Run Saved Macrooption will run a macro le.

Small edits to a macro le can make them much more versatile. &t macro commands
are just the name of the GUI item possibly followed by whatevehe GUI would want (such
as a lename or a number). The macro command to load a di ractin le is \ Data File: ".
It must be followed by a line with a lename. It can also be folbwed by a list of lenames, a
directory containing di raction data, or some combinationof each. The program will run the
subsequent macro lines on every le in the list and all di ration les found in any folders in
the list. The loop will end with a subsequent Data File: " command, a \END LOORne,
or the end of the macro le.

When lopping over diraction les, there is special markup which makes it easy to save
les in a loop to useful places with useful names. They areBASENAM&nd \ FILENAME
Whenever the program nds \BASENAMIiB a macro le, it will be replaced with the path
of the current diraction le that has been loaded. \FILENAMEwiIll be replaced with the
lename of the current di raction le. You could recreate a di raction le (if's extension was
mar3450) with the macro command PATHNAME/FILENAME.mar343M exmaple of these
keywords being used would be the macro lineSave Integration Data " followed by the
line \PATHNAME/FILENANEat ". The macro would always save the intensity integrated
data right next to the diraction le with a name similar to th e diraction le.
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Chapter 8

An Example

This section will present a pedagogically interesting exgnte which demonstrates several of
the programs important features. The purpose of this chaptes neither to be comprehensive
nor to be particularly detailed. It will instead give a sensef the type of analysis that can
be done with this program. It will motivate the rest of the marmal. further details and
information on any of the things described below can be found the appropriate sections
of the manual.

David, a user of the program, was studying iron thin Ims usig powder di raction. He
was particularly interested in measuring the shifts in di mction peaks of a sample. To realize
this experimentally, he capture the image of the standard daration crystal Lanthanum
Hexaboride (LaB6). Without changing the experimental parmeters, he then imaged many
samples for which he wanted to measure the shift.

The steps that are needed to do this analysis will be descritheFirst, we will calibrate
the di raction detector. This is to say that we want to determine the precise experimental
parameters that characterized the di raction machine wherthe images were captured (for
example, the distance between sample and detector, the egerof the x-rays, etc). Since
the image of the standard calibration crystal was taken at tb same time as the images of
interest, the calibration parameters inferred from the stadard crystal can be used to analyze
the rest of data.

To perform this calibration, we rst opened up the Area Di raction Machine. Figure 8.1
shows what we are rst presented with.

From the \Data File " input, we load into the program the LaB6 le. Once the le is
loaded in, a new window opens up which shows the di raction da This window is shown
in gure 8.2.

To do the detector calibration, the program must know theQ values associated with the
standard crystal. Since LaB6 is so common, it is a preset dafain the program. We go
into the menu bar, into the \calibration " menu, into the \ Standard Q' menu, and then
selected Lanthanum Hexaboride. This is shown in gure 8.3.

(More standard Q les might be added in the future). In order to perform image al-
ibration, the program nally needs to know an initial guess &the calibration parameters.
Although one could enter these parameters by hand, often tes decent guesses at the ex-
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Figure 8.1: The cali-
bration tab.
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Figure 8.2: The
di raction data
window.

Figure 8.3: Loading
a standardQ le.



perimental parameters are stored in the header data insidd the diraction image. The
program can try to nd these header calibration values and puthem into the inputs in the
program. To do this, we could pushed theGet From Headérbutton. With the image, the
Q values, and an initial guess in the program, we are ready to dbe calibration.

But rst, we want to examine how good the initial guess is. To d so, we can select the
\Draw Q Lines? check box on the Calibration tab. When this is selected, thggrogram
will draw on top of the diraction image red lines correspondhg to what di raction pat-
tern should show up on the detector (for the given calibratio parameters andQ values).
Figure 8.4 shows what the program displays for our example.

Figure 8.4: The diraction im-
age with constant theQ lines dis-
played upon it. These lines are
calculated for the calibraiton pa-
rametesr found in the header of
the image. They are not partic-
uarly accurate.

Of course, our initial guess isn't great so the red lines ddnfatch too well with the
loaded patter. The data will look like

We can do a cake of the data. A caked plot is a presentation ofdhdata in a di erent
parameter space. The« axis isQ and they axis is . Ideally, if the calibration parameters
are known exactly, the caked data will show up as many vertitines. We can cake the data
by going to the cake tab. This tab is shown in gure 8.5.

On this tab, we have to pushing the AutoCake. When we do so, a hew cake window
opens up. Figure 8.6 shows what the program displays for ouxaample.

We see that for The caked data with the initial guess calibrén parameters, our di rac-
tion lines have a systematic wiggle. It might be hard to see thi the full image, but by
zooming into just one line we nd the di erence to be much moreobvious. A zoomed in
range is shown in gure 8.7.

This means that our initial guess at calibration parameterss not great. We can now do

68



69

Figure 8.5: The cali-
bration tab.



Figure 8.6: A caked plot done
with the calibration parameters
found in the header of the im-
age. The header parameters are
not particuarly obvious and the
di raciton peaks are not partic-
uarly straight. Calibratin helps
improve the strightness of the
di raciton peaks.

Figure 8.7: A zoom in of the cake
shown in gure 8.6. When zoomed
into diraction image, the poor
calibration becomes much more
obvious.
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the calibration. To do so, we push the Do Fit" button on the \ Calibration " tab. If the
calibraiton did a good job, the constantQ lines drawn on the di raction image move so that
they are entirely over the di raction pattern. This is shownin gure 8.8.

Figure 8.8: The diraction win-
dow after being calibrated. The
constant Q lines fall well on top
of the di raction peaks.

The diraction peaks on the caked image become much straigheThe caked window
after calibraiton is shown in gure 8.9.

They look good even when zoomed in. A corresponding zoom intleé caked window in
shown in gure 8.10.

After caking the calibrated data and convincing ourselvedhat our calibration parameters
are good, we can save the calibration parameters to a le foater use. We can do so
using the \Save to File " button on the \ Calibration " tab. After selecting the location
\ C:/Data/LaB6 _cal.dat ", the calibration le gets saved as

Listing 8.1: 'The Calibration Parameters File'

1 xc 1722.966078 0

2 yc 1724.227970 0

3 D 122.691351 0

4 E 12707.219316 0

5 alpha -0.052910 0

6 beta 0.130553 0

7 rotation -41.523477 0
8 pixelLength 100.000000

9 pixelHeight 100.000000

71



Figure 8.9: The cake window af-
ter calibration. The lines are
much straigher then the lines in
gure 8.6 before calibration.

Figure 8.10: A zoomed in part of
gure 8.9. Even at a large zoom
in, the line remains very straight.
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Figure 8.11: The
pixel masking tab.



As can be seen in gure 8.2, there is a beam stop on the left sidéthe image which is
obstrucing part of the image. We know that none of the pixelslbcked by the beam stop
contain any interesting information so we are going to wanta tell the program to ignore
any pixels blocked by the mask. We can do so with a polygon mashll polygon masking
is done on the Ymasking' tab. A screenshot of this tab is shown in gure 8.11. We wanta
add a rectangular polygon mask on top of the beam stop in the age. To do so, we push
the \Add Maskbutton. We then move to the di raction image and draw the beanstop on
the image by left clicking nodes on the screen. We add the nalde by right clicking. After
having drawn the polygon mask, our di raction image is showrn gure 8.12.

Figure 8.12: Here is the same di raction
data as in gure 8.2 but with a polygon
mask drawn over the beam stop. This
polygon mask will stop the beam stop
below it from being used in subsequent
data analysis.

Once we decide we are happy with our polygon mask, we can savia le using the
\ Save Maskbutton. The le gets saved out as

Listing 8.2: 'beam stop_mask.dat'

1 # Polygon(s) drawn on Mon Apr 14 00:33:12 2008
2 25.6749379653 1634.63771712

3 42.7915632754 1814.36228288
4
5

1959.85359801 1857.15384615
1959.85359801 1626.07940447

We can then load in this mask when we do the rest of our analysi§he mask will make
sure that none of the the pixels within the beam stop are usedif any subsequent analysis.
Now, we are going to want to perform an intensity integrationof the rest of our data.
We can use the intensity integrate data to look for peaks in # data. The steps for doing
the rest of this analysis are as follows. Load in particularle we are interested in. Load
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in these calibration parameters using thelload From File" button on the \ Calibration
tab.l. Next, we can load in our previously recorded beam stop masking the \Load Mask
button on the \ Masking' tab. We also have to make sure polygon masks are used in the
analysis by making sure the Do Polygon Mask? check box is selected. With everything
loaded into the program, we can perform & integration by going to the \Integrate " tab.
The integration tab is shown in gure 8.13

Figure 8.13: The in-
tegration tab.

We set the range of theQ integration by setting \Q Lower? to 0 and \Q Upper? to
5. We then set the precision of the integration, or the bin sg by setting the \Number of
Q7 input to 300. Finally, we push the left \Integrate " button and a window showing the
di raction data opens. For a particular iron sample, this wndow is shown in gure 8.14.

We can save this data to a le with the \Save Datd button on the \ Integration " tab.
This data is saved out as two column ASCII. After doing this foall the di erent les that we
have, we can load all the data into another program, such as dosoft Excel, and compare
the peaks.

LIf you just did the calibration, the parameters should already be in the inputs. The point is just that
you could load the parameters into the program if you were, sg to open the program at some later point
in time.
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Figure 8.14: The inten-
sity integration window
for a particular iron
sample.

But if there are a lot of les to analyze, this whole process cabe very time consuming.
Instead of doing this analysis by hand, we can automate the @cess by writing a macro to
analyze all the les one at a time. First, we put all of our datainto \ C:/Data/ ". The macro
that we can run is

Listing 8.3: 'A macro to automate the analysis'

1 Data File:

2 C:/Data/

3 Load From File

4 C:/Data/LaB6_cal.dat
5 Load Mask

6 C:/Data/beam_stop_mask.dat
7 Do Polygon Mask?

8 Select

9 Integrate Q Lower?

10 0

11 Integrate Q Upper?

12 5

13 Integrate Number of Q?
14 300

15 Integrate Q-I
16 Save Integration Data
17 PATHNAME/FILENAME_ int.dat

The rst command loads into the program all of the di raction les in the folder \ C:/Data/ "
one at a time and runs the rest of the analysis on that particar le. The program then
loads in the calibration le that we saved earlier and sets th integration bounds. Then the
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progarm loads in the beam stop mask. Then, the program doe<avs intensity integration
and saves the intensity integrated data to a le. The PATHNAME keyword gets repalced
with teh path leading up to the particular le and the FILENAM E keyword gets replaced
with the particular le's name. For example, the le \ FeL2d070.mar3450 in the folder
\ C:/Data/ " would be replaced with \C:/Data/FelL2 _d070.int.dat " This command will let
us save out of our intesnity integrated data next to the corrgponding di raction le with a
useful lename.

After we run this macro, all of our data will be saved out into éxt les. We can, for
example, open the les in Excel and plot the dierent diraction patterns on the same
graph. If we did this, we would obtain a plot that looked somdting like the graph shown in
gure 8.15.

Figure 8.15: An example of what the shift
in peaks might look like when two dirac-
tion patterns were plotted in Excel on top
of one another.
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Chapter 9

Viewing Di raction Data

Figure 9.1: The cali-
bration tab. This is
what you see when
you rst open the
program. This tab
allows you to load
di raction data into

the program.

When you rst opep the Area Diraction Machine, you will see the calibration tab. It
is shown in gure 9.1. The rst thing you will probably want to do is load di raction data
into the program. This can be done with the Data File: " input either by typin in the
lename by hand and pushing the load button or clicking on theolder icon and using a le
selector. After the le is loaded, a diraction data window will open. This window is shown
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in gure 9.2.

Figure 9.2: The diraction
data window. This win-
dow will open after a le is
loaded. This windows al-
lows you to interact with
di raction data.

You can use the diraction data window to interact with your di raction data. you can:

Zoom into the data{ left click on the data and hold down on the mouse. When the
mouse is moved around, the program will create a resizing sqa. When the mouse is
released, the program will zoom into the selected range.

Zoom out of the data{ right click on the data.

Pan across the datd hold shift, push down either mouse button, and then move the
mouse around and the image will move with it. Let go of the moesto stop panning.

Resize the window click on the bottom right corner of the window and drag. The
window will reszie just like any other window and the data wil become larger or
smaller.

Read coordinates for a selected poiftwhen mousing over the image, the, y, Q, ,
and | values for that pixel will be displayed at the bottom of the window. Q and  will
only be dipslayed if valid calibration data is loaded into tle program. See chapter 11.

Change the Color Mag the \ Colormaps' selector can be used to change the particular
color map used to display the data.
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Invert the Color Map { The \ Invert? " checkbox can can be used to invert the colors
of the color map.

Low & Hi Pixels { The sliders to the right of the image can be used to change the
intensity scaling of the image. The low value corresponds tbe intenisty value that
will be maped to the lowest part of the color map and the hi valel corresonds to the
intensity value that will be mapped to the highest part of thecolor map. * This feature
is useful because it can help make visible certain intensitanges in the image.

Log Scaling- By default, intensity values are linearly mapped to colors the color map.
The \Log Scale?' checkbox can be selected to instead apply a log scale mappiof
the intensity values to the color map.

9.1 File Formats

The program can load in Mar data: \mar2300", \ .mar3450", and the \ .mccd" Mar CCD
format. It can load in standard \.tiff " data. It can load in the ESRF Data Format \.edf ".
The program can only display square data. Whenever non-sqeadata is loaded into the
program, the program will simply pad out the image until it isa square with pixels who's
intensity is 0.

9.2 Loading Multiple Images

Using the same le input, you can load multiple les into the program at the same time. If

multiple les are put in the \ Data File: " text input and separated by spaces, they will all

be loaded in. Alternately, the di raction data le selector can be used to select multiple les
at the same time. All of the selected les will be loaded. Wheseveral les are loaded at
the same time, the program will add the intensities of the imges pixel by pixel and work

with the combined image. This can be useful for analyzing ssnal images taken of the same
sample. The program can only add together les of the same foat.

9.3 Saving the Diraction Image

You can save diraction data in the program as a popular imagéormat. The data can
be saved by doing to the File " menu bar and selecting the Save Imagé option. The
formats currently allowed are \pg", \ gif ", \ eps", \ pdf", \ bmg, \ png’, \ tiff ", and the
ESRF data format \edf".

Images saved as a popular image format will be saved with wieaker threshold masks,
polygon masks,Q lines, Q lines, and peaks are currently displayed over the data in the

ITechnically, what is set is the percentage of the most intens pixel in the image should be mapped to
the lowest or highest value in the color map.
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di raction data window. And it will be saved at whatever the current zoom level is?> See
chapter 11 for a discussion of th® lines, Q lines, and peaks. See chapter 12 for a discussion
of threshold masks and polygon masks.

Because the program will pad any non-square data when it isdded to. The program
will always save out all images as squares. If this is undesdite, the saved images will need
to be cropped using another program.

2This is not the case with ESRF data. When an image is saved as aBSRF le, it will be saved un-zoomed
with none of the lines or masks on top of it.
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Chapter 10

Detector Geometries

Detector

Crystal

Figure 10.1: An X-Ray diraction
setup. X-rays scatter from a 3-D sam-
ple and are captured by a 2-D de-
tector. In this setup, the detector is
perpendicular to the incoming x-ray
beam.

X-ray diraction can be models as in gure 10.1. Cones of lighleave the crystal at
particular angles to the incoming beam. These cones of ligate captured by a detector. By
convention, the scattering angle of the x-rays measured \itespect to the incoming beam is
called 2 . Usually, the interesting thing to measure by doing x-ray diaction is the scattering
angles of these cones of light. If we placed a detector perpgawular to the incoming beam,
the cones of light would be detected as circles of high intetys If we knew the distance from
the sample to the detector and the distance from the center d¢iie detector to a particular
ring (or really any point on the detector), we could easily daulate the scattering angle of
the light. If the distance from the crystal to the detector isd and the distance from the
center of the detector to our particular point on the detectois r, then the scattering angle
is

tan2 = (10.1)

r .
ot
This is shown in gure 10.2. life is not always so simple. Theedector is never exactly
perpendicular to the incoming beam. In practice, the deteot will always be slightly o set
with respect to the incoming beam. Failing to account for tts would introduce a systematic
error in a measurement of scattering angles.
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Figure 10.2: The same setup as in g-
ure 10.1. We are now interested in
some particular point on the detector.
2 is the scattering angle of the light
that gets to this point, d is the dis-
tance from the crystal to the detector,
andr is the distance from the center of
the detector to some particular point
(which 2 is associated with). By cen-
ter of the detector, we mean the point
on the detector where the beam would
hit if did not interact with the crystal.

There is a need to analyze di raction data on detectors that i@ not perpendicular to the
incomming x-rays. We will present a theory of tilted detectcs rst developed by Abhik Ku-
mar in [5]. Our derivation will result in di erent formulas because ¢ a di erent assumption
about how the detector is tilted.

What we are interested in is mathematically describing pason coordinates on a tilted
detector by relating them to more theoretically motivated giantities such as the scattering
angles that would lead to a beam hitting that particular poirt on the detector. In order to
do this, we must rst work out the transformation of points on a tilted detector to points
on an untilted detector. This is to say that we want to gure ou where on an untilted
detector the beam would have hit were it to hit that untilted detector instead of the tilted
detector. The point on the titled detector can be though of ashe shadow of the point on
the untitled detector. We will call the point on the untilted detector as measured on the
untilted detector (x;y) and the corresponding point on the tilted detector as meased on
the tilted detector as (x°°%y%%. The reason for three primes will become obvious shortly.
This is shown schematically in gure 10.3. Another way to thik about this problem is to
imagine putting your head at the sample and then looking dily at some point (x°%%y°%
on the real tilted detector. What we want to gure out is some orresponding point &;y)
on an imagined untilted detector which would appear to eye tbe in the same direction.

(%Y
Figure 10.3: Here, the detector is titled by
some arbitrary angle with respect to the in-
coming beam. We will call some arbitrary
point on the tilted detector (x°%y%f We
are interested in relating this point to the
point (x;y) on some imagined untilted de-
tector where a scattered beam would have
hit were that tilted detector in place instead
of the tilted detector.
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10.1 The Three Tilt Angels

In order to relate these points, we need to nd a way to descréd some arbitrary tilt. To
do so, we will characterize a detector tilt in terms of 3 indegndent detector rotations. We
will use two orthogonal rotations about thex and y axis followed by one rotation about the
center of the detector. These three angles are shown in gui®.4. We can solve our original
problem much easier if we deal with each rotation separately

9.00
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: o>
X\

—— o]

~
~o
~
\\\
] ~ -
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~4 ‘/

(a) The tilt angle . This (b) The tilt angle . This angle (c) The rotation angle R. This is a

angle characterizes a rota- characterizes a rotation around the rotation about a vector normal to %%

tion around the ¢ axis. X0 axis. What exactly x°is will be and ¥ What exactly %%and y*are
described shortly will be described shortly.

Figure 10.4: Any detector tilt can be characterized as a roton by followed by a rotation
by followed by a rotation around the center of the image byR.

10.2 The  Tilt

We will rst apply a rotation around % by angle . To do this, we will rst consider a
point (x;y) on an untilted detector and project it onto some point &% y9 on this rotated
detector. This is to say that we will gure out where on the degctor rotated by angle a
beam would hit were it to hit the tilted detector instead of the untilted detector. A diagram
of this is shown in gure 10.5. We can use the geometry of these&agrams to gure out the
relationships between the coordinates. Using the propertyf similar triangles, we see that

x%cos

X — .
d d+ xOsin

(10.2)
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Figure 10.5: A diagram of the situation depicted in gure 1B where only the rotation
about ¥ has been applied.

From this it follows that

dx°cos
X= 4% x0sin (10.3)
Using similar triangles again, we see that
y y°
LA 10.4
a a+b (10.4)
d d+ x%sin
- = — 10.5
a a+b ( )
from which it follows that
dy®
=_ 7 - 10.
y d+ xO%sin (10.6)

So, equation 10.3 and 10.6 give us the proper geometrical atjons for relating a point on
the untilted plane (x;y) to the corresponding point &%y9 on the rst plane.

10.3 The Roll

We can now take this point &%y9 on the tilted plane and project it onto another plane
which has been tilted by about ¥ and a rolled by around X°. To do so, we take the
plane which is rotated by an angle around y*and then rotate it around the line x% This is
diagrammed in gure 10.6. A more geometric diagram can be sem gure 10.7 and a cross
section of they = 0 plane can be seen in gure 10.8.

We can use these gures to determine the equations that we rieeWe see from gure 10.8
that f = y°&in cos . From gure 10.7, we see thath = y°¢cos . Using the property of
similar triangles, we see that
y%cos

y_ Y'tos
a a+b+c

(10.7)
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Figure 10.6: A diagram of a plane
that has been tilted about the y*axis
by angle and then aboutx®by angle

Figure 10.7: Here is a more geomet-
rical diagram of the gure shown in
gure 10.6.

Figure 10.8: Here is a cross sec-
i tion of the y = 0 plane of the g-
ure shown in gure 10.6.




Using similar triangles again, we see that

d_d+ x%in +f

2 2t bt c (10.8)
From which we can deduce that
B dy®cos .
Y= G+ x%in =+ y9%in cos (10.9)
Figure 10.8 shows thatg = y°%in sin and that x°Cos = | + g. Using similar triangles
again, we see that
X I
d~ d+ x%in + yo&in cos (10.10)
Plugging in and simplifying, we get
_ d(x°tos  y%in )
X 9+ x%in + y%sin cos (10.11)

10.4 The R Rotation

Figure 10.9: Here, we take a
point on a plane rotated by angle
about ¥ and by angle about

2% We then rotated this point
about a line normal to the plane
going through the origin by angle
R. Rotating the point is equiva-

lent to rotating the plane.

We have to deal with the nal rotation. We will rotate the coordinate (x°9y°y on the
previous detector about a line perpendicular to the plane #t goes through the center of the
detector. We will call this nal point ( x°%y°%. This is shown schematically in gure 10.9.
The equation for this rotation is

x% = x%%osR + y*RosR (10.12)
y? = y%%osR x%fosR (10.13)

Applying equation 10.12 onto equation 10.11 and 10.9 give tne relationship that we wanted
all along.
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10.5 Relationship to Pixel Coordinates

(x9%y%%is suppose to represent what we actually measure on a reatetgor. Unfortunately,
things are not quite so easy. We do not actually measure thegalues. The whole formalism
assumes that we are measuring distances from the point on tdetector where the beam
would hit were it not to be diracted. Unfortunately, it is not at all clear what this point
is. A discussion of how to nd this center center will be givemn section 11, but for now lets
simply state that there is some point on the detector that ishe center and call it &c; y.) We
are interested in some other pixel reading on the detector wadh corresponds to the point
(x9%y0% | ets call it (Xq;Yq). There is some material property of the detector describinthe
distance between each pixel (e.g. 1000 mm/pixel). We will tahis width ps. We can relate
these quantities using:

X% (Xg  Xo) Pps Y5 (ye Yo) ps (10.14)

This means that, in terms of §.;y.) and ps, we can relate §;y) and (Xq;Yq) Which are
directly measurable experimental quantities.

10.6 Inverting the Equations

We can invert these formula to learn whatx®and y®are in terms ofx andy. We have:

dx
00~ 10.1
X dcos  xsin cos (xcos + d)=(§ cot +1) (10.15)

and :
00 dx cos = (§cos +sin )

~ dcos  xsin cos (xcos + d):(gcot +1)°

y (10.16)

10.7 Q, 2, and

We now have a way of relating X°%y°¥, a point on a detector with a pitch ,tilt , and a
roll R applied to it, to a point on an untilted detector (x; y) where a beam of light would have
intersected were it not to hit the tilted detector. With this relationship, we can now relate
these quantities to theoretically motivated quantities. h particular, the angle of scattering
of a beam is by convention called 2and a quantity measuring the scattering angle around
the incoming beam is called . These quantities are shown in gure 10.10. We can see that
the relationship between x;y) and 2 and is

=-- 7 (10.17)

and y
tan = ” (10.18)



(x.y)
Figure 10.10: For a particular point &;y), O

we always associate two quantities: 2and

2 is the angle of scattering of the
beam, or the angle that an incoming beam
is de ected by when it diracts o the
crystal. is a measure of the azimuthal
angle around the beam. It tells you in
what direction radially outwards (with re-
spect to the unde ected beam) the outgo-
ing beam was was scattered.

The quantity Q is often used instead of 2 they are related by
Q=4 sin(2=2)= (10.19)

The reason for usingQ instead of 2 is because diraction theory shows that theQ values
of preferential scattering of a crystal is a material propgy independent of the experimental
setup (such ad and ).

Alternately, energy could be used in this formula. To do so,nergy can be related to
wavelength using the De Broglie's formula

E = hc= (10.20)
Finally, sometimes people use the quantitp instead. D is related to Q by
D=2=Q (10.21)

Using equation 10.14, we now have a way of relating pixel calarates (Xq;Yq) read directly
o of a detector to the theoretically motivated coordinates(Q; ). In order to do this
conversion, we must use the values, y., ps, d, , , , andR. A discussion of how these
values can be determined so that this transformation can inractice be done will be given
in section 11
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Chapter 11

Calibration

One of the most common types of analysis of diraction data iso perform an intensity
integration in Q. This will create a plot of average intensity as a function of. Since pow-
der diraction procedures cones of light, this means that th intensity should be uniformly
large for someQ values and uniformly low for others, leading t& values where the intensity
sharply peaks. TheQ values that lead to these peaks can be used to learn structunaforma-
tion about the crystals that are being di racted. So in prindple, using the transformations
just described, it should be easy to convert all of the pixeloordinates Kq; Yq) into Q values
and then plot average intensity as a function o). The only problem we would face is that
in order to do the transformation, we would need to know the \taes of the the parameters
that characterize an experiment. These arg., y., d, , , , and R.! Calibration then is
the process used to nd what we will now call the calibration &lues.

11.1 The Calibration Algorithm

Although in principle all the calibration values could be egerimentally measured, in practice
they can not be directly measured to an acceptable level ofqmision. Instead, a standard
calibration procedure is used to infer these values from fedi raction data. The trick to
doing this calibration is to image a standard while perfornmg the diraction analysis of
an unknown sample. Assuming that the diraction machine wasot changed between the
collection of the standard crystal and the di raction of theunknown sample, the calibration
data corresponding to the two images will be the same. So, ifwan gure out the calibration
values of the standard crystal, we can use these values wheralyzing the unknown crystal.
This is exactly what is done in practice.

What it means to use a standard crystal is to know the particdr Q values for which
the crystal preferentially scatters light. With this information, and the calibration values for
some patrticular experiment, we could in principle gure ouexactly what di raction pattern
we should nd. This do this, we could, for eachQ value, vary and calculate the &q;Yq)

1The pixel scaleps is usually know in advance as a uniform property of the detecdr being used.
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coordinate corresponding to that Q; ) pair. After using enough values, we would be able
to Il in the rings as they would show up on the detector.

In fact, my program can do just this. If you load in a set ofQ values (see section
11.13) and then put into the program some calibration valuesand then push the \Draw Q
Values?" check box, you can then see what the particular diraction mage would have
shown up on the detector. This is described thoroughly in seen 11.7

Being able to do this still leaves us with a hard problem to seé. For particular calibration
values, we can easily calculate what the diraction patterrshould look like. But what we
really know is what the calibration values are for the known idaction pattern of a standard
crystal. In order to perform the real calibration, then, we an vary the calibration values
until they make the pattern that can be calculated to show up @ match the pattern that
was actually captured. The process of image calibration theis a procedure to "t' the
calibration values to a di raction patter with known Q values.

11.2 The Fitting

In order for the tting algorithm to work, the program must al ready have an initial guess
of the real calibration parameters. This initial guess doesot have to be perfect, but it
should be somewhat close. The algorithm them requires a list the known Q values. And
it additionally requires a range for each of thes® values. In order for the algorithm to
work properly, inside of thisQ range (as calculated by the initial calibration value gue3s
there should be the peaks that we are interested in and no sjpous other peaks that would
confuse the computer.

With the Q values speci ed along withQ ranges, we can divided up any di raction image
several regions, where within each region we know there is aique peak. An example of
this is shown in gure 11.1.

Our algorithm rst requires nding ( x;y) coordinates of many di raction peaks. To do
so, the algorithm will pick some value and then spread radially out from the center of the
di raction image in this  direction.?. Between the givenQ range (for each of theQ ranges),
the program stores an array of all the data point on the line.tlthen ts a Gaussian to the
data and the (x;y) coordinate of the center of this Gaussianx{y) is taken to be the peak.
A diagram showing this algorithm is shown in gure 11.2. Thismethod is then done for
many di erent evenly spaced values and the particular value can be selected by the user
for increased accuracy.

The only really tricky part about this step is that there is na always a consistent di rac-
tion ring around the image and therefore some of these ts shtdl not nd peaks. Whenever
this occurs, the program just ignores the current t and move to the next. But guring out
when some patrticular peak is bad is not particularly obviousThe method that this program
uses is to ensure each peak passes a few tests. The rst testhiat the t peak was too
close to the edge of the image. So any peak where the Gaussi#ia center plus or minus

2Remember that the center is speci ed by the initial calibration values
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Figure 11.1: A division
of a diraction image
into Q ranges where
each diraction peak
falls uniquely inside one

Q range.

Figure 11.2: Here is a dia-
gram of the peak nding al-
gorithm. The solid circular
black lines represent di rac-
tion peaks on the image. The
dotted lines represent theQ
ranges used to nd the peaks.
The diraction peaks are en-
tirely within the ranges. Fi-
nally, the radial line repre-
sents the program picking a
particular  value and look-
ing for peaks inside of theQ
ranges. Finally, the Gaussian
peaks represent the program
tting a gausian to the inten-
sity pro le inside of each of
the ranges.



twice the t's standard deviation gets outside of theQ range is considered too close to the
edge of the image. The next test that is done is to calculate ike standard deviation of the
data outside of the peak is signi cant when compared to the Inght of the peak t. To do
this, the code calculates the standard deviation of all theigels that are farther then twice
the peak’s t standard deviation away from the center of the pak. If the height of the peak
divided by this calculated background standard deviations smaller then some particular
value, the peak is considered bad. This value is called by tipeogram \Stddev" and can be
speci ed by the user from user. Presumably, the higher thatStddev" is, the more picky
the program is about what a good peak looks like. This isn't # most robust method for
nding peaks, but it seems to work pretty well and it should beeasy in principle to add new
tests to the algorithm.

After compiling a list of diraction peaks in the image, the pogram can then de ne a
residual function which we can minimize to nd the best t calbration values. To do so,
we can convert the K;y) coordinate of each of the peaks into afpeax; peax) Pair. For each
of these §;y) coordinates, we also know what the inpulQ list says the experimentalQ
value for this peak should be (which we will calQe,,). We can therefore de ne the residual
function as X

Residualic;yc;d; ; ; ;R )= (Qpeak  Qexp)? (11.1)

X;y pairs

The functional dependence comes from calculatin@peac from a known (x;y) coordinate.
We see that the smaller the Residual is, the closer we have cno nding the real cali-
bration values which characterized the di raction experinent. If we had perfect calibration
parameters, the residual should be equal to zero. But it is Weale ned for any calibration
parameters. So we can take this function of 7 variables and mmize it. The value of this
function at its minimized is the best guess calibration vakess. There are plenty of computer
algorithm that can minimize arbitrary multi-variable functions. The one that this code
uses is called the Levenberg-Marquardt nonlinear least say@s algorithm and the particu-
lar implementation that is used to to perform the calibration is Manolis Lourakis's levmar
library[6]. Ideally, once the minimization is done, a good guess at tlwalibration values is
found.

11.3 Calibrating With the Program

Di raction image calibration is done with the calibration tab of the program. This tab is
shown in gure 9.1 on tab 79.

As described above, to calibrate an image you must have aldsaloaded into the program
a diraction data le, a Q data le for the particular sample that was taken, and an iniial
guess at the calibration data.

Once you have done these three things, you can simply push thBo Fit" button to
calibrate the di raction data. The program will then perform the calibration algorithm as
described in section 11.1. Once the program nds a best gudssthe new calibration values,
it will put those values into the inputs.
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While tting the program will print to the console some usefu things. Most interesting,
the program will calculate the residual function divided bythe number of 11.1 and display
print the value to the terminal before and after the calibraton is doné The output will look
like

Listing 11.1: Displaying the Residual
1 - Before fitting, the calculated residual is 5.336138e-04

2 - Doing the fitting
3 - After fitting, the calculated residual is 6.532131e-06

The program will then display the reason why the tting algoithm decided to quit doing
the tting and decided that it found its best guess. For exampe, the program might print
out

Listing 11.2: Reason For Quitting
1 - Reason for quitting the fit: 2-stopped by small gradient J* T e

The di erent reasons are told to me by the levmar tting algorithm. | am taking them di-
rectly from the levmar websitehttp://www.ics.forth.gr/ ~lourakis/levmar/  That web-
site says that the di erent reasons why the tting can stop ae:

stopped by small gradient 3T e

stopped by small Dp

stopped by itmax

start from current p with increased nmu

no further error reduction is possible. Restart with incresed mu
stopped by smalljjgj _2[6]

| think that the rst reason to quit (stopped by smallw gradient) means that the program
found its way to the bottom of the hill and is convinced that itdid its best job minimizing
the function. 1 think that (stopped by itmax) means that the program was forced to quit
by a hard coded limit to the number of loops through the tting. So if you come across this
message, you should probably do the t again with the currentalues. | honestly don't know
enough about the levmar tting algorithm to know what the other messages really mean. If
you need to know, you should go into the tting algorithm's daumentation and see what
you can nd out.

The tting algorithm also provides a covariance matrix thatit nds while tting. 1 do now
know how it calculates this matrix or what it exactly what it means physically. Nevertheless,
| print it out after the tting is done.

SActually, the program calculates the residual function divided by the number of peaks. So it really
displays the residual per peak, which is a more useful quarty because it would not change if more peaks
were used in the t
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Listing 11.3: Display of A Covariance Matrix

1 Covariance Matrix

2 [[ 9.43e-04 -1.53e-04 5.36e-05 3.27e-03 -1.77e-03 3.64e-0 3 2.10e+00]
3 [ -1.53e-04 1.17e-03 -1.40e-04 -8.58e-03 3.91e-05 -2.02e- 04 -1.25e-01]

4 [ 5.36e-05 -1.40e-04 2.07e-04 1.38e-02 -1.45e-04 3.12e-04 1.78e-01]

5 [ 3.27e-03 -8.58e-03 1.38e-02 9.49e-01 -6.44e-03 1.40e-02 8.02e+00]
6 [ -1.77e-03 3.91e-05 -1.45e-04 -6.44e-03 4.01e-01 -8.42e- 01 -4.76e+02]

7 [ 3.64e-03 -2.02e-04 3.12e-04 1.40e-02 -8.42e-01 1.77e+00 9.99e+02]
8 [ 2.10e+00 -1.25e-01 1.78e-01 8.02e+00 -4.76e+02 9.99e+02 5.65e+05]]

The rows (from top to bottom) correspond to Xc", \ yc", \ d" \ E', \ alpha", \ beta"”, and
\rotation ". The columns (from left to right) also correspond to %c", \yc", \ d" \ E,
\alpha", \ beta", and \rotation ". | think that the square root of the diagonal elements
of the covariance matrix are supposed to correspond to untanties, but | do not know
enough about the minimization algorithm to be really comfdable saying that these are the
true uncertainties in the t parameters. Your mileage my vay. Anyway, | print out the root
of the diagonals. The printout by the program

Listing 11.4: Display of the root of the diagonals

Root of the diagonal of the covariance matrix
xc: 0.0307145820046

yc: 0.0341970790239

d: 0.0143735880013

E: 0.97393322373

alpha: 0.633295666676

beta: 1.32940880588

rotation: 751.595873785

coO~NO O WN P

If you do not like the guess for the calibration parameters,qu can always unto to the
previous calibration values before the t using the Previous Values " input.

11.4 The \ Number of Chi? and \ Stddev?" Input

The calibration algorithm requires starting at the center ad moving across the image in
constant slices (see section 11.1 or gure 11.2 for a graphical repgatation). The number
of these slices around the image that should be done is usdestble using the Wumber Of
Chi?" input. The default value is 360. The more slices that are used, the slower the t
will be.

Section 11.2 describes how the program uses a parameter ttedaine how picky it should
be in allowing peaks that it nds. Roughly, this parameter coresponds to how many times
larger the peak has to be then the background noise outside tbe peak. This parameter
can be set using the Stddev?" input. The default value is 5. The higher the value, the less
likely the program will be to nd and use bad peaks but the mordikely it will be to ignore
valid good peaks.
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11.5 Work in

Often times, one wishes to deal with the wavelength of the inming beam of light instead
of the energy of the beam. Of course, the energy and wavelgmgtre intemately related by
the formula

E = he= (11.2)

If you wish to work with wavelength in units of nanometers inad of energy in units of
electron volts, you can change the state of the program so ththe program works with
wavelength instead of energy. To do so, you have to go into teeenu bar and change the
radio select from Work in eV' to \ Work in Lambd& Once you do that, the calibration
parameter input will be labeled . Any number in that input will then be converted. After
the parameter is modi ed during a t, the program will put the wavelength value into the
input. Finally, when the calibration parameters are savedd a le, the wavelength will saved
to the le instead of the energy.

11.6 Fixing Calibration Parameters

When tting calibration parameters, it is not always desirable to allow the program to
vary all of the calibration parameters. For example, the emgy of the beam used during the
di raction experiment might be already very well known alredy so there would be no reason
to calibrate the energy. If you wish to x any of the calibration parameters values so that it
does not vary during a calibration t, you can use the check baes under the Fixed?" label
to x the parameter. When the corresponding check box is chked, the parameter will not
vary during the t. When it is not checked, the parameter will vary during the t. You can
not x the pixel length and pixel height because they are alwgs held xed. This is because
these are never the short of thing that one would want to varyThey are some property of
the detector that is known in advance.

11.7 Displaying Constant Q Lines

After the program has been given a diraction le, a list of the constantQ lines, and some
calibration parameters, the program has a very useful featel where it can display on top
of the image the di raction pattern that should show up for the particular Q lines and the
particular calibration parameters.

The \Draw Q Lines? button on the \ Calibration " tab enables this. Figure 11.3 shows
what the di raction image looks like with the Q lines drawn on it.

Drawing these lines is actually very easy. For ead value, the program picks a lot of

values. We know that each of the), values is in the constantQ line so we can use the

calibration parameters to convert them tox, y values and connect all the pixel coordinates
to make the line.
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Figure 11.3: A dirac-

tion image with constant
the Q lines displayed on
it.
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Constant Q lines can also be drawn on top of the caked data. This is dedmd in
section 13.4. The color of th&) lines can be changed using theGolor" button next to the
\Draw Q Lines? button.

11.8 Displaying Constant Q Lines

The program needs in addition to theQ values a range irQ to nd the peaks. See section 11.2
for more details. Because the program has this range, it caftsa display the Q range on
top of the image. This can be done with the Draw dQ Lines? button and the color of
these lines can be changed with the correspondin@adlor " button. Figure 11.4 shows what
the di raction image looks like with the Q lines drawn on it.

Figure 11.4: A dirac-
tion image with the con-
stant Q lines displayed
upon it.

Constant Q lines can also be drawn on top of the caked data. This is dedmd in
section 13.4.

11.9 Displaying Peaks

Section 11.2 describes how the program has to nd a bunch of gks on the diraction
image in order to perform the calibration. After the programhas found all the peaks, it can
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conveniently display them on top of the di raction image. Ths can be done with the Draw
Peaks?. The peaks will be displayed as crosses and the color of thegks can be changed
with the corresponding \Color " button. Figure 11.5 shows what the di raction image looks
like with the peaks drawn on it. This feature is useful becaesyou can use it to see if the
program is actually nding real peaks corresponding to di ection maxima. If many of the
peaks that the program nds do not correspond to di raction maxima, it is less likely that
the program would do a good job calibrating the di raction image.

Figure 11.5: A dirac-
tion image with the
peaks displayed upon it.

Peaks can also be drawn on top of the caked data. This is debed in section 13.4.

11.10 Masking Peaks

The general idea behind masking peaks is allow polygon magkse chapter 12) to be used
as a way to forbit the program from using any peaks found withi a certain region. So if a
polygon mask covers a certain area of the image, none of theake found within that area will
be used while calibrating. Also, none of the peaks will be gisyed on top of the di raction
image or cake image. An example of this is shown in gure 11.6&ee section 11.9 for a
discussion of displaying peaks on a di raction image. Figerl1l.6b shows the same e ect on
top of the corresponding caked plot. See chapter 13 for a dission of caking. In particular,
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see section 13.5 for more information on displaying peaks ancaked image. This feature
was added in version 2.0.0.

11.11 Saving the Peak List

The program has a feature where it can generate a list of di iion peaks that it nds the
di raction image (just like when it is calibrating) but then instead of calibrating the image,
the program saves out all of the peaks to a data le. This can baseful, for example, if you
need a list of pixel coordiantes where di raction peaks areof some further data analysis.
The \Make/Save Peak List' button can be used to save out the peak list. Just as in
calibrating, the program requires in advance for a di racton le to be loaded, for a standard
Q le to be loaded, and for a guess at the calibration parametsrto be in the inputs.

A typical peak list le looks like*

Listing 11.5: A Peak List File,basicstyle=

1 # A list of peaks found in the diffraction image.
2 # Calculated on Sun Apr 6 18:06:56 2008

3 # Calibration data used to find peaks:

4 # X center: 1725.0000000 pixels

5 # y center: 1725.0000000 pixels

6 # distance: 122.5040000 mm

7 # energy: 12714.2388941 eV

8 # alpha: 0.0000000 degrees

9 # beta: 0.0000000 degrees

10 # rotation: 0.0000000 degrees

11 # pixel length: 100.0000000 microns

12 # pixel height: 100.0000000 microns

13 # X y RealQ FitQ chi width intensity 2theta

14 2016.15 1724.44 1.511 1.50 0.11 0.0075 5564.32 13.36
15 2016.68 1719.33 1.51 1.50 1.11 0.0093 1662.72 13.39

First, the le contains the calibration parameters used to gnerate the peaks. Then it has
a comment string describing each of the numbers in each of thews that follow. Each
row corresponds to a unique peak. The rst two numberg and y are the x and y pixel
coordinate corresponding to a location in the di raction inage of the peak. RealQ is the
Q value found in the Q list that is already known. FitQ is the Q value calculated from
the (x;y) coordinate using the calibration parameters. is also calculated from the pixel
coordinate using the calibration parameters. Intensity isntensity value found in the data
at this peak. 2 is calculated at the ;y) coordinate using the calibration parameters.

4l have modi ed what a real le looks like a bit. The numbers are really tab separated but | show them
space separated for brevity.
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11.12 Handling Calibration Data

There are inputs in the calibration tab of the program for inut of the calibration parameters.
\xc" is for the x center, \yc" is for the y center, \d" is for the distance, \E' (or\ :") is for
the energy or wavelength. The , , and R inputs are for the three angles. pl " stands for
the pixel length and \ph" stands for the pixel height.

You can directly input calibration data using the inputs andonce the data is in the inputs
it can be used by the program to do the calibration (or the cakig or anything else).

But there are a couple of other ways to deal with calibration ata. You can load and save
calibration program from the program using the Load From File" and \ Save To File"
buttons. This is nice because it can be used, for example, tave the data that was found
by calibration data for future reference. As you will see, th calibration data les can handle
information about whether the parameters should be xed (sesection 11.6).

The format for a calibration data le is pretty simple. Below is an example

Listing 11.6: Calibration Parameters

1 # Calibration File

2 Xc 1725.000000 0

3 yc 1725.000000 0

4 D 125.296000 0

5 E 12735.395772 0

6 alpha 0.000000 0

7 beta 0.000000 0

8 rotation 0.000000 0
9 pixelLength 100.000000

10 pixelHeight 100.000000

Comment lines beginning with a # and are ignored. Each of thegrameters gets its own line.
Each parameter name is followed by some spaces or tabs andnthiee value. The value can
be followed by an optional second number which is either zeow one. The second number
corresponds to whether or not the parameter should be xed ik tting. One means x
the parameter. Zero means let it very. If no number is givenhe default is to not x the
parameter.

Instead of energy, the wavelength of the incoming beam of ligcan be stored in a
calibration le. The wavelength line would look like \wavelength 0.973540". When the
program is in wavelength mode, the program will save out clliation parameters with this
line instead of the one above. The program will load in a le gdaining either no matter
what mode the program is in. It will do the conversion if it hasto do put the right value
into the input. See section 11.5.

11.13 Handling Q Data

Q data is always loaded into the program from les.Q data can be loaded into the program
with the \ Q Data:" input on the calibration tab. You can either type in the lename of the
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Q le by hand and push the load button or click on the folder iconto the side and use the
le selector to pick the le that you want.
The Q data le format is pretty simple. Below is an example

Listing 11.7: Lanthanum Hexaboride.dat
# This is Q Data for Lanthanum Hexaboride

Q dQ

1.511543809 .05
2.137646823 .05
2.618102966 .05
3.023087619 .05
3.379873753 .05
3.702525225 .05

O©oOoO~NO UL WNPEF

Comment lines beginning with a # and are always ignored. Therst line in the le should
be of the form "Q dQ" or "Q delta Q" to specify that this is a list of Q values. The rest
of the le should have Q values followed a Q range. All Q values must be larger than 0.
None of theQ ranges can overlap. Instead of inputting) values, the program can inputD
values if the rst line is instead "D dD" or "D delta D" The valu es should be given instead
in D space and the values will be converted using 10.21.

11.14 The \ Get From Header? Input

Often times guesses at the experimental parameters are &drin the header data inside of
the di raction image. The program can try to nd these headercalibration parameters and
put them into the calibration parameters inputs in the progam. This can be done with the
\ Get From Header button.
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(a) A di raction image with di raction peaks and two
polygon masks displayed on top of it.

(b) A caked plot with di raciton peaks and two poly-
gon masks displayed on top of it.

Figure 11.6: Polygon masks can be used to block out certairgrens of the image. Whenever
a polygon mask is loaded into an image, none of the peaks fouindthe mask's region will

be used while calibrating the image. Furthermore, none of ¢hpeaks within the masks will
be displayed on the di raction image or caked plot.
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Chapter 12

Pixel Masking

When analyzing diraction dat, not all of the pixels in an image should be used in the
analysis. In order to make the program ignore certain pixelwhen doing the analysis, this
program allows for two types of pixel masking: threshold mé&sg and polygon masking.
You can apply either of these from the Masking' tab. gure 12.1 shows this tab.

12.1 Threshold Masking

The top half of the \Masking' tab is devoted to threshold masking. Threshold masking
allows all pixels, either above a certain intensity or below certain intensity, to be ignored

when doing the di raction analysis. The \Do Greater Than Mask? check box can be used
to apply a mask that will cause all pixels greater than a certa value to be ignored. The

\ (Pixel's Can't Be) Greater Than Mask " input can be used to specify the maximum

pixel value. Correspondingly, the Do Less Than Maskcheck box can be used to make the
program ignores all pixels below a certain value. The partitar value can be speci ed with

the \Less Than Maskinput.

When you apply a threshold mask, the pixels over this thresl will all be colored
di erently on the di raction and cake image. You can specifywhat you want these masked to
be colored with the \Color " button next to the greater than and less then masks. Figure2.2
shows what a di raction image looks like when all pixels withntensity above 5000 are colored
green and all pixels below 30 are colored red.

When caked data is saved out to a le, any of the pixels that aréarger than the greater
than mask are saved as -2. Any of the pixels smaller than theskethan mask are saved as -3.
If you need to analyze caked data outside the program, this baviour needs to be accounted
for.

When an intensity integration is saved to a le, any of the toohigh or too low pixels are
simply ignored when calculating average intensity.
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Figure 12.1: The
pixel masking tab. It
allows for threshold
masking and polygon
masking.
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Figure 12.2: A diraction
image with a greater than
mask and less than mask.
All pixels with intensity
greater than 5000 have
been colored green. All
pixels with intensity less
than 30 have been colored
red. Applying an intensity
mask can be a useful way
to see if a detector's pix-
els have been overloaded.
They can also be a used to
ensure that no overloaded
pixels are used in subse-
quent data analysis.



12.2 Polygon Masking

Figure 12.3: Here are two
polygon masks that have
been applied to a dirac-
tion image. One of them
blocks the beam stop.

Sometimes, large areas of a di raction image should not bedluded in any data analysis.
For example, often a beam stop blocks part of the detector antie pixels behind the beam
stop should be ignored. To allow for this sort of masking, thprogram has a polygon masking
feature. Polygons can be drawn around certain parts of the daction image and those parts
of the image will not be used in any subsequent analysis. Thisogram can handle multiple
polygons at the same time.

So long as the Do Polygon Mask? check box is selected, the polygon masks will be
used when performing subsequent analysis. The polygons|wi displayed on the di raction
and cake image. Any pixel in the di raction or cake image thais inside one of the polygons
will have a dierent color. An example of polygons on a dirat¢ion image are shown in
gure 12.3. The color of the polygon masks can be changed uginsing the \Color " button
next to the \Do Polygon Mask? check box. When caked data is saved out, any pixels
inside polygon masks will be given an intensity value of -4. Uding an intensity integration
masked pixels will be ignored.

A polygon mask can be added to the image by pushing theAtld Polygor' button on
the \Masking' tab. This button will stay down when pushed. Pushing it putsthe program
in polygon drawing mode. In this mode, the diraction image Wl behave di erently. The
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Figure 12.4: Here is the in-
terface for adding a new
polygon mask to the pro-
gram. This particular
mask will cover the beam
stop so that the beam stop
does not aect the inten-
sity integration.



di raction image can no longer be zoomed or panned. Instealft clicking on the di raction
image will make the program draw the polygon. The rst left dck adds the rst vertex.
Each success left click add another vertex. The drawing cae nished by right clicking (this
will also create a nal vertex). Right clicking will make the program exit the drawing mode,
return to its original state, and add the polygon into the prgram. Multiple polygons can
be added using the Add Polygor' button. Figure 12.4 shows the program when a polygon
is being drawn. Drawing a polygon can be aborted without sawj the mask by unpushing
the \Add Polygort button.

Figure 12.5: Here is the
di raction image window
as a polygon is about to be
removed. When mousing
over a polygon to remove
it, the program will display
a red border around it.

The \Remove Polygohbutton can be used to remove a polygon in the program. Like
the \Add Polygort' button, this button will stay pushed and change the behavio of the
di raction image. After the \ Remove Polygohbutton is pushed, clicking over a particular
polygon will remove it. After the polygon is removed, the prgram will return to its normal
state. Figure 12.5 shows what the di raction window looks ke when a polygon is about to
be removed. The program can be returned to its normal state thiout removing a polygon
by unpushing the \Remove Polgyohbutton.

The \Clear MaskK' button can be used to remove all the polygons at once. TheSave
MaskK button can be used to save all the polygons to a le. A le of pdygons can be added
to the program using the \Load Mask button. The le for polygon les is very simple. For
the polygons in gure 12.3, the following le would be saved:
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Listing 12.1: 'polygons.dat’

1 # Polygon(s) drawn on Thu Feb 07 00:00:21 2008
2 93.140587183 1098.06704199
3 208.013978042 1237.77792276
4 1052.48863517 1237.77792276
5 1213.93231962 1271.92947139
6 1248.08386825 1126.00921814
7 1095.95424252 1067.02017959
8 1064.90738013 1104.27641447
9 847.579343365 1122.9045319
10

11 332.201427619 737.923438212

633.355992844
729.601266267

902.471808902
709.981262058

Each line is an k,y) coordinate for one of the nodes of a polygon. The coordinatare
separated by spaces. Each polygon is separated by a newlir@omment lines beginning
with # are ignored.

12.3 Masking Caked Plots

Any polygon mask or threshold mask will also show up on the caét plot. Polygons on the
di raction image can look very distorted on caked plots. Figre 12.6 shows an example.
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(&) A rectangular polygon mask in the middle of a
di raction image

(b) The same rectangular mask on a caked plot

Figure 12.6: An example of how a relatively simple shape on ardction image will can
look very di erent on a caked plot.
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Chapter 13

Caking

13.1 The Caking Algorithm

A caked plot is like a radial ¢ vs ) plot of the diraction data as it would appear if it
were captured on an untitled detector. A radial plot will male circles of constant become
straight lines. Caked plots are important because di racton peaks will also be straight lines.
A caked plot is actually a plot ofQ vs . Equation 10.19 shows thaQ is related by the sin
functionto 2 and 2 is just the scattering angle of the di raction peak. From eqation 10.17,
2 is related to the radiusr by a tangent function. Although the relationship is not linar,
Q increase ag increases and therefor€) is a similar quantity to r.  corresponds to the
angle radially around the center of the image. So a cake plot @ and is really analogous
to a radial plot.

Cakes plots are calculated with the following algorithm. Tl program must rst bin Q
and space. The user can specify the bin range and bin size with utp. Alternately, the
code can try to pick a range that is large enough to encompadsetwhole region. Once the
bin size is speci ed, the program has to Il each bin an intenty value. Since each bin has
some particularQ and value! we can calculate the correspondingf®y°% pixel coordinate
for this Q and value using equation 10.15 and 10.16. The intensity valuerfthe pixel
coordinatex®nd y®Js the intensity that should be put in the bin. (x°°®?y°®is generally not
a whole number so a bilinear interpolation of the intensity eund this coordinate is used to
get a best estimate.

In principle, the caking algorithm could be implemented dierently. The algorithm cur-
rently runs a loop over each bin. One could alternately loopver all the pixels of di raction
data. Each pixel has a particular k°°%y°%® coordinate. Equations 10.9 and 10.11 could be
used to calculate theQ and value for each pixel in the image, and each pixel could be put
into its corresponding bin. After doing this for all the pixds, we could average the intensity
in all the bins. This implementation does not necessarily fiuan intensity value into all the
bins. This could be overcome by applying the previous algtnim only to the bins for which

1Technically, each bin has aQ and range. We will take the middle of the bin to be the particular Q
and value for the bin.
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nothing was added. This method would in some ways be more acate because each of the
pixels in the di raction image would be used in the analysis thereas they are aren't all used
in the above algorithm. But the biggest downside of this altmate algorithm is that it is sub-
stantially slower because there are usually signi cantly wre pixels in the di raction image
then bins used in a cake. For example, mar3450 data holds 345@450 pixels while cakes
typically have a resolution of 1000 1000. This alternative algorithm was not implemented
for this reason.

Caked data can be masked with pixel masks. Whenever the pragn nds an intensity
value that should be masked (either because it is too largeyd small, or in a polygon mask),
it lls in that part of the caked array with a particular negat ive value. When the caked data
is displayed, these negative values are given special celor

The program can perform a polarization correction of the c&kl data. The polarization
correction formula is

|
PF

Im=P F (13.1)
P(1 (sin2)sin( 90))+(1 P)L (sin(2)cos( 90))?) (13.2)

with Im the measured intensity. The 2 and values correspond to the particular value
that is being corrected. All pixels have their intensity corected by this formula before they
are put into a cake bin.

13.2 Caking with the Program

Figure 13.1 shows the Caking" tab. This is where caking is done. The program can
only cake data after one or more diraction les has been loagtl into the program and
after calibration values for the particular di raction image are loaded. In order to cake, this
program needs to know a range i@ and space that should be caked. This can be inputted
with the \ Q Lower?, \ Q Upper? \ Chi Lower?', and \ Chi Upper?' inputs. The program
will also need to know how manyQ and bins to create when caking data. This can be
inputted with the \ Number of Q?and \ Number of Chi? inputs. Once this is done, the
\Do Cake button will cake the data.

After the cake nishes, the program will open a cake data winav which displays the
cake data interactively. The cake data window acts just likehe di raction data window so
everything in Chapter 9 carries over. The only real di erene is that whenever the caked
data is zoomed into, the program will take the selected zoonamge and put it into the inputs
on the cake tab and the recake the image. The caked data can laken to the previous
zoom level either by right clicking on the caked plot or by pusing the \Last Cake" button

13.3 AutoCake

The program has a convenience buttonAutoCake'. \ AutoCake' will guess a good range of
Q and values, put them into the input, and then push the Do Cak&button automatically.
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Figure 13.1: The
caking tab of the
program. This is
where caking is done.
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Figure 13.2: The cake data
window for the program.
This window will open up af-
ter the data is caked. This
window behaves exactly like
the di raction data window.

This will create a cake without much work. The program will ptk a range that puts every
pixel from the di raction image into the cake. It will pick a bins sizes so that each pixel
of the displayed cake data will correspond to one bin. This Wiensure that the cake looks
as sharp as the computer can draw it. After the display is resed, the number of bins will
change correspondingly. The next time AutoCake' is pushed, the cake window will again
look sharp.

13.4 Displaying Q and Q Lines

If a Q list has been loaded into the program, constar® lines or Q lines can be displayed on
top of the cake data. Remember that constan@ lines on the di raction image are straight
vertical lines on the caked plot. The program will display castant Q lines or Q lines on the
caked plot whenever they should be displayed on the di raain image. See section 11.7 and
section 11.8 for a discussion of displaying consta€t lines on di raction data. Figure 13.3
shows constantQ lines displayed on a caked plot and gure 13.4 shows constantQ lines
displayed on a caked plot.
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Figure 13.3: The caked data window
with constant Q lines drawn on top
of it.

Figure 13.4: The caked data window
with constant Q lines drawn on top
of it.

117



Figure 13.5: The caked data window
with di raction peaks drawn on top
of it.

13.5 Displaying Peaks

Any peaks that the program nds when performing a calibratio can be displayed on top of
the caked data. The peaks will be displayed as crosses. Figl3.5 shows peaks displayed on
a caked plot. Peaks will be displayed on the caked plot wherexvthey should be displayed
on the diraction image. See section 11.9 for a discussion displaying peaks on di raction
data. Being able to displayQ lines and peaks can be very useful for checking if a calibrari
was done properly. Figure 13.6 illustrates this principle.

13.6 Polarization Correction

The program can apply a polarization correction to the cake.The \Do Polarization
Correction? " check box can be used to apply a polarization and the polaation value
can be set with the \P?" input.

13.7 Working in 2

Caked plots can have 2 instead of Q as one of the axis. This can be done by changing
the program to 2 mode by doing into the le menu and selecting the Work in 2theta "
option. When this is selected, all the names in the program ivichange fromQ to 2 . For
example, the program will have \2 Lower ", \2 Upper’, \ Number of 2 ". The program
will display the cake image with 2 as its axis. The \Work in @Q option in the le menu
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(a) A bad calibration (b) A good calibration

Figure 13.6: displaying peaks and constar) lines on top of the caked data can be used to
tell if the data is properly calibrated. If the calibration is good, all the peaks will cluster very
close to a particular value ofQ line and there will be no systematic variation of the di racion
peak. If the calibration is bad, the di raction peaks will have a systematic distortion around
some value ofQ. This can be used to see if the program is properly calibratinthe data.

can be used to return the program to caking wit) as one of the axis. This feature was
introduces in version 2.0.0 of the program.

13.8 Saving Cake Images

You can save caked data out as one of many popular image formafhe program can save
caked images asjpg ", \ gif ", \ eps", \ pdf", \ bmf, \ png’, or \ tiff . When caked data is
saved as an image, it will be saved out with whatever threshltbimasks, polygon masks(Q)
lines, Q lines, and peaks were displayed over the caked data in the gram.

13.9 Saving Cake Data

Caked data can also be saved as a plain text data le. This canebdone by pushing the
\ Save Datd button and selecting a destination. The format for caked Es is just a long
comment string followed by the data as rows of numbers. Herg an example:

Listing 13.1: 'cakeddata.dat'
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1 # Cake of: N:/data/LaB6_14 02 _56.mar3450

2 # Data Caked on Wed Mar 12 21:30:55 2008
3 # Calibration data used to make the cake:

4 # X center: 1725.0000000 pixels

5 # y center: 1725.0000000 pixels

6 # distance: 125.2960000 mm

7 # energy: 12735.3957721 eV

8 # alpha: 0.0000000 degrees

9 # beta: 0.0000000 degrees

10 # rotation: 0.0000000 degrees

11 # pixel length: 100.0000000 microns

12 # pixel height: 100.0000000 microns

13 # A Polarization correction was applied

14 # P = 0.500000

15 # A greater than mask was applied

16 # Greater than mask = 1000.000000

17 # A Less Than Mask was applied

18 # Less than mask = 10.000000

19 # Polygon mask(s) were applied

20 # Polygon(s) used in the analysis:

21 # 2400.10912343 1073.5706619

22 # 962.511627907 2282.88014311

23 # 2850.51520572 2572.86762075

24 #

25 # 1573.33631485 1215.47942755

26 # 1820.13416816 2893.70483005

27 # 2906.04472272 1573.33631485

28 # Cake range:

29 # Q Lower = 0.000000

30 # Q Upper = 6.726544

31 # Number of Q = 560.000000

32 # Q Step = 0.012012

33 # chi Lower = -180.000000

34 # chi Upper = 180.000000

35 # Number of Chi = 560.000000

36 # chi Step = 0.642857

37 # Note: pixels outside the diffraction image are saved as -1
38 # Pixels greater than the greater than mask are saved as -2
39 # Pixels less than the less than mask are saved as -3
40 # Pixels inside of a polygon masks are saved as -4
41 # chi increased down. Q increases to the right

the comment string describes what state the program was in wh the cake was done. It
rst lists the name of the diraction le(s) that were caked. Next it lists the calibration
parameters used when caking the data. Then is the polarizati correction, the greater than
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mask and the less than mask that were used. It has the pixel admates of any polygons
that were used when caking. It then lists the range of the cakend the number of bins that
were used. The program sets the value of certain bins in the tdato special values. Bins
that are outside of the diraction image are saved as -1. Binthat were masked because
they were too large are saved as -2. Bins that were masked hesm they were too small
are saved as -3. Bins that were inside a pixel mask are saved-4s This is written in the
comment string.

The program tries to be smart about the comment string. If no rasks were used, the
comment string instead contains lines like

Listing 13.2: 'Alternate Header'

1 # No greater than mask was applied
2 # No less than mask was applied
3 # No polygon masks were applied

If the program is working in 2 mode, the comment string will instead say something like

Listing 13.3: 'Another Alternate Header'

1 # 2theta Lower = 0.000000

2 # 2theta Upper = 62.814525

3 # number of 2theta = 560.000000
4 # 2theta Step = 0.112169

Then comes the data. As the header describes, each line in theis of constant and
contains many numbers separated by spaces. Each column iscofistant Q.  increases
down and Q increases to the right. The top left bin corresponds t® lower and upper.
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Chapter 14

Intensity Integration

14.1 The Integration Algorithm

An intensity integration is a plot of average intensity as adnction either Q, 2 , or . The
calibration values for the di raction data must be known bebre the integration is done. A
range and bin size for the integration must be give. For exartgg aQ | integration might
have a range from 2 to 5 with 100 bins.

The algorithm for performing the intensity integration is & follows: loop over every pixel
in the image. Add its intensity to a bin ifit Q, 2 , or value falls within the bin's range. We
need to know the calibration values because they are used @maulate Q, 2 and from the
pixel's coordinates using using equations 10.9 10.11, 18).10.17, and 10.19. After binning
all the pixel, the bins are then averaged.

This program can constrain the integration range. This meanthat you can perform,
for example, aQ integration of only those pixels with some particular range. Or, you
can constrain your integration to a particular Q range. This could be used, for example,
to perform a integration of only one di raction peak. The algorithm for performing the
constraint isn't di erent. You just only bin intensity valu es which are allowed by by the
constraint.

The program can perform a polarization correction to the irggration. The polarization
correction formula is

|
PF

Im=P F (14.1)
P(1 (sin(2)sin( 90))+(@ P)A (sin(2)cos( 90))?) (14.2)

with Im the measured intensity. The 2 and values correspond to the particular value
that is being corrected. If this option is selected, all piXe have their intensity corrected by
this formula before they are binned.
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14.2 Integrating with the Program

The program requires one or more diraction images and caliation parameters to be
loaded into the program before an intensity integration carbe done. Figure 14.1 shows
the \Integrate " tab. This is where integration is done. There are two sets ahputs on the
tab. The inputs on the left is titled \ Q-I Integration " and can be used for performingQ
integration. The \Q Lower? and \ Q Upper? inputs on the left can be used to specify an
integration range in Q. The number of bins inQ space can be speci ed with the Number
of Q7" input. The \ Integrate " button on the left can be used to perform aQ integration.

Figure 14.1: The in-
tegration tab. This is
where intensity inte-
gration is done.

The inputs on the right is titled \ Chi-1 Integration " and can be used for performing
a integration. The \Q Lower? and \ Q Upper? inputs on the right can be used to
specify an integration range in . The number of bins in space can be speci ed with the
\Number of Chi? input. The \ Integrate " button on the right can be used to perform
integration.
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Figure 14.2: The integration window
that opens up after an intensity inte-
gration is performed.

Figure 14.3: The integration window
that opens up after you perform an
intensity integration.
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14.3 The Integration Window

After the program nishes integrating, a line plot of the integrated data will be displayed
in a new window. Figure 14.2 shows the integration window gitaying Q | integrated
data and gure 14.3 shows the window displaying | integrated data. This window has
a couple of nice features for interacting with the data:

Zoom into the data{ left click on the plot and hold down on the mouse. When the
mouse is moved around, the program will create a resizing taogle. When the mouse
is released, the program will zoom into the selected range.

Zoom out of the data{ right click on the plot.

Resize the window click on the bottom right corner of the window and drag. The
window will resize just like any other window and the plot wilbecome larger or smaller.

Read coordinates for a selected poiftwhen mousing over certain the plot, the selected
Q, or 2 and intensity value will be displayed on the bottom of the widow.

Log Scaling{ the \ Log Scale?' check box will toggle whether to display a log scale
of the data.

14.4 Working in 2

This program can integrate in 2 instead of Q. This The \Work in 2theta " option in the
menu bar can be used to change the way that integration is don&his option will make the
label on the left to say \2 -l Integration ". The inputs below will change to \2 Lower",
\2 Upper', and \ Number of 2 ". The \ Integrate " button will then perform an integrate
in 2 . The diraction window will display average intensity as a finction of 2 . If there are
any values in the \Q Lowe't or \ Q Uppet, they will be convert from Q to 2 values when
the program switches. The Work in Q option in the menu bar can be used to change the
program back to working with Q. Any values in the \2 Lower?' or\2 Upper?" will be
converted back.

14.5 Autointegrate

There is a convenience function calledAutolntegrate " that is similar to the \ AutoCake'
button. \ Autolntegrate " will try to pick a nice integration range and then do the integra-
tion. The Autolntegrate button on the left will guess at a nie range ofQ (or 2 ) and then
do the Q (or 2 ) integration. It will always make the lower Q or 2 value 0 and the upper
value large enough to include all the data. It will set the nutner of Q or 2 to 200. The
\ Autointegrate " button on the right will guess a nice range of and do the integration.
It will always set \ Chi Lower" to -180, \Chi Upper" to 180, and \Number of Chi to 200.
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14.6 Constraining the Inputs

As was described in section 14.1, an integration of one paratar can be constrained by
another parameter. For example, & or 2 integration can be done only of values in a
particular range. integration can only be done of a particulaiQ or 2 range. Of course,
it would be pointless to constrainQ to a certain range of 2 or vice versa.

To constrain the integration using the program, there are te convenient \Constrain
With Range On Right? and \ Constrain With Range On Left?" check boxes.

When \Constrain With Range On Right?" is selected, theQ or 2 integration being
done will be constrained in by the chi range speci ed by \Chi Lower' and \ Chi Upper".
When \Constrain With Range On Left?" is selected, the integration will be constrained
by either the Q range speci ed by \Q Lower? and \ Q Upper? or the 2 range specied
by \2 Lower? and\2 Upper?.

14.7 Masking

The program allows for masking of certain pixels while integting. Masking of intensity
integrated data is done whenever theDo Greater Than Mask? \ Do Less Than Mask?
or\Do Polygon Mask? check boxes are selected. Whenever the program nds an intaty
value that should should be masked (either because it is toarfie, too small, or in a polygon
mask), the program will ignore the pixel and not bin it. Refeito Chapter 12 for a discussion
of masking.

14.8 Saving Integrated Data

The intensity integrated data can be saved to a le using the $Save Datd button. A typical
integration le looks like:

Listing 14.1: 'A Cake Data File'

1 # Q vs | Intensity Integration

2 # Intensity integration of: C:/data/LaB6_14_02_56.mar34 50
3 # Data Integrated on Fri Mar 21 17:59:16 2008
4 # Calibration data used:

5 # X center: 1725.0000000 pixels

6 # y center: 1725.0000000 pixels

7 # distance: 125.2960000 mm

8 # energy: 12735.3957721 eV

9 # alpha: 0.0000000 degrees

10 # beta: 0.0000000 degrees

11 # rotation: 0.0000000 degrees

12 # pixel length: 100.0000000 microns

13 # pixel height: 100.0000000 microns

14 # A polarization correction was applied
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

P = 1.000000
A greater than mask was applied

Greater than mask = 10000.000000 (All pixels above 10000.0 00000 were
A Less Than Mask was applied.

Less than mask = 50.000000 (All pixels below 50.000000 were
Polygon mask(s) were applied
Polygon(s) used in the analysis:

ignored)

647.844364937
1449.93738819
2535.84794275

1258.66905188
1215.47942755
1505.46690519
1653.54561717

1369.72808587
3226.88193202
1449.93738819

641.674418605
999.531305903
1116.76028623
777.413237925

Integration performed with a chi constraint

HHFEHFHFHFHFHFHFHFHFHFHFHHTHHHHHFHFHH

chi constraint lower:
chi constraint upper: 270.000000
Integration Range:

90.000000

Q Lower = 0.000000
Q Upper = 6.726544
Number of Q = 200.000000
Q Step = 0.033633
# Q Intensity
0.016901 0.000000
0.050703 0.000000
0.084504 0.000000
0.118306 0.000000
0.152108 0.000000
0.185910 0.000000

The header is a bunch of lines that begin with #. The header desbes the state that the pro-
gram was in when the intensity integration was performed. Td st line describes what type

of integration was performed. For example, if a
le will say \ # Chi vs | Intensity Integration

| integration was performed, the header
". The header then contains the name(s)

of the di raction les that were integrated. The header contains the calibration parameters
that were used when integrating. The header contains inforamtion about any polarization
correction, greater or less than mask that was applied, pa@gn mask that was applied. It
describes any constrains on the integration and nally thentegration range and step size.
Following the header is the line ¥ Q Avg Intensity " (or \ # Chi Avg Intensity " or \ #

2theta Avg Intensity
sponding to one bins. The rst number is the middleQ (or

"). Following it is the data. Each line contains two numbers orre-
or 2 value) in the bin and

the second number is the average intensity.
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Chapter 15

Macros

This program is almost fully automatable with macros. Macrs canb e used to perform data
analysis as quickly as possible. The program is capable oteeding macros and running
macros. The macro le format is simple enough that it is easy e or modify macro les
by hand.

Figure 15.1: The
\Macrd" menu bar.

This is where macros
are recorded and run.

15.1 Record Macros

The easiest way to create a macro is to record it. A macro can lbecorded by selecting the
\ Start Record Macro" option in the \ Macrd menu bar. Figure 15.1 shows the Macrd'
menu bar. After all of the steps that should be recoreded aranished, pushing \Stop Record
Macrd' will save the macro le to a selectable le.

15.2 Run Macros

The \Run Saved Macrooption in the \ Macrd menu to run a macro le. The program
will run all the steps in the macro le and then return control of the program. This is how
analysis can be done with macro les.
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15.3 The Macro File Format

A macro le contains a list of commands which tell the progranwhat to do. Each command
in the GUI is on its own line. The syntax for macro commands isrptty straightforward.
Macro commands are the text corresponding to the part of the (@ that does the command.
For example, to make the macro get the calibration data fromhte header of the image, the
macro command is Get From Header To t the calibration data from within a macro,
the command is \Do Fit".

Things get more interesting when the GUI item requires requeés doing more then just
pushing a button. For example, to deselect the Draw Q Data? check box, the macro
needs to specify that the check box gets deselect instead efested. For these, the macro
commands need to be followed by a second line with the partlan. For this example, we
would write

Listing 15.1: 'Draw the Q Lines on the Display'

Draw Q Data?

Select
# Or, to not display them:
Draw Q Data?

Deselect

O WN PP

It is the same when numbers should be set. To change a calibomt values, the macro would
look like:

Listing 15.2: 'Input a Number'

XC:
1752.3
beta:
5.23

A OWDNPE

These are treated just the same. The following macro commanmebuld save the cake as an
image:

Listing 15.3: 'Save the Caked Image'

1 Save Caked Image
2 C:/data/cake_output.jpg

If you look on the rst tab, there are three inputs at the top: \Get From Header?,
\dark current: ", and \ Q data:". The macro command to load any of these is a little bit
ambiguous. When using the actual GUI, you would, at least innnciple, type in the name
of a le and then press load. But there is no reason to make thel@ so redundant. So to
load in any of these using a macro command, all you have to dogive the name of the input
and then the lename. It will automatically load the le with out you explicitly giving the
\load" line. So, for example, to load in theQ data, you would include the following lines:
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Listing 15.4: 'Load the Q Data'

1 Q Data:
2 C:/data/q_data.dat

15.4 Looping Over Diraction Data

To analyze a le, the command is just

Listing 15.5: 'Load the Diraction Data’

1 Data File:

2 C:/data/first.mar3450
3 Get From Header

4 # ...

But macros les also allow for an easier way to loop over manyles and perform the same
analysis on all of them. To loop over multiple di raction images at once, you could simply
give more les after the rst one. The loop will end when one othe 3 things in the macro
le happens: a subsequent line in the macro le readsBND LOQRmore diraction data is
loaded using the command Data File: ", or the macro le ends. For example, if we look
at this macro le.

Listing 15.6: 'Loop Over Di raction Data’

Data File:
C:/data/first. mar3450 C:/data/second.mar3450
Integrate Q Lower?
.25
Integrate Q-I
END_LOOP
Draw Q Lines?
Select
# ...

O©oO~NO UL WNPE

We see that it would get evaluated just like this macro le:

Listing 15.7: 'An Equivalent Macro

Data File:
C:/data/first.mar3450
Integrate Q Lower?
.25
Integrate Q-I
Data File:
C:/data/second.mar3450
Integrate Q Lower?
.25

OO NOOOUTS WNPEF
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10 Integrate Q-I
11 Draw Q Lines?
12 Select

13 # ...

You can even give it whole directories. When you give it a dicgory to loop over, the program
will (non-recursively) look for all the diraction les in t hat directory and include them in
the list. For example, if the folder \C:/data/ " contains only the le \ first. mar3450 "
and \second.mar3450', an equivalent way of looping over these les would be to ise the
command

Listing 15.8: 'Load the Diraction Data’

1 Data File:
2 C:/data/
3 # ...

You can put as many folder and les after a Data File: " line as you wish. Just make sure
to put them all on the same line or the program will complain.

15.5 The PATHNAME and FILENAME Commands

Finally, there is a convenience markup which can help you makfancy macros. When-

ever you have loaded data in, you can refer to the part name ohé current di raction

le that is loaded using the string \PATHNAMENd you can refer to the le name it-

self using the string WFILENAME So, in our previous example, if we had loaded the le

\ C:/data/second _file.mar3450 ",\ PATHNARMIZould get chaned into \C:/data " and \ PATHNAME
would get evaluated to \second file " without the extension. In e ect, you can imagine
building back the full name from \PATHNAM&Nd \ FILENAMEUsing an equation line

C:/data/second _file.mar3450 = FILENAME/PATHNAME.mar3450

These commands are useful because they allow you to loop oveany les at once but still
save things in useful places and with useful names. It woulceleasy, for example, to save
the intensity data you calculate for each le being looped @r using the macro command:

Listing 15.9: 'Using the FILENAME and PATHNAME Markup'

1 Save Integration Data
2 FILENAME/PATHNAME\_int.dat

This would save, for example, €:/data/first. mar3450 ™s intensity datato\ C:/data/first  _int.dat ",
\ C:/data/second.mar3450 "'s intensity data to \ C:/data/second _int.dat ", and the same

for all the others. This feature lets you have the macro to saveach of the les to the right

place and give it a useful name.
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15.6 Loops Over Multiple Images

We know from chapter 9 that you can load in multiple diraction images and add them
together. But we have not yet talked about how this can be donmside of a macro. The
syntax is pretty straight forward. We introduce a new macro eommand named WMultiple
Data Files " which signi es that many les should be loaded. To load in mitiple les
and have their intensities added, this command must be folled by a list of lenames
enclosed within [ and ] brackets. Keeping with the same examepabove, we could load
in \ C:/dataffirst. mar3450 " and \ C:/data/second.mar3450 " and have their intensities
added using the command

Listing 15.10: 'Add the intensities'

1 Multiple Data Files:
2 [C:/data/first.mar3450 C:/data/second.mar3450]
3 # ...

The program enforces that all of the les are in the same folde This is done so that that
the \PATHNAM¥#riable remains meaningful when looping over multiple imges.

You can then incorporate this into a loop in one of two ways. [t, you can simply
put several of these bracketed lists into the macro and eacli the lists will be analyzed
separately. For example,

Listing 15.11: 'Loop Over the Analysis'

1 Multiple Data Files:
2 [C:/first.mar3450 C:/second.mar3450] [C:/third.mar345 0 C:/fourth.mar34
3 # ...

This will separately loop over Yirst. mar3450 " and \ second.mar3450' added together and
then \third.mar3450 " and \ fourth.mar3450 " added together. But this gets cumbersome.
Alternately, you can simply take all of the les that you want to be added together and
analyzed and group them into subfolders. Each of the subf@s will contain only les that
should be added together and analyzed. If you then give the wr@ the name of the folder
containing all these subfolders, it will loop over all the dofolders.

For example, suppose we created the foldeCYdata ". Inside of this folder is the sub-
folder \A' containing the les \ first.mar3450 " and \ second.mar3450. Also inside of the
data folder is the subfolder B' containing the les\ third.mar3450 " and\ fourth.mar3450 ".
We could do the exact same data analysis as above by issuing tinacro command with only
the data folder name.

Listing 15.12: 'Using the Folder Syntax'
1 Multiple Data Files:
2 C:/data
3 # ...
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You can also put as many folders and lists separated by [ and $ §ou wish onto the line
and it will loop over all of them.

Since the macro function insists that all les that are addedogether are in the same
folder, the \PATHNAMEommand will properly expand to the path that all of the les that
were added together have. But since they all have dierent ¢ names, the FILENAME
command will always be replaced by the stringMULTIPLEFILES' to avoid ambiguity.

15.7 The FOLDERPATH and FOLDERNAME com-
mands

To facilitate writing macros that load in and add together sgeral di raction images, the
program introduces two new macro commands. The rst commanis \FOLDERNAMIAd
will always be replaced by the name of the folder containindhé current di raction le (or
les). Since the macro insists that all les are loaded formhe same Folder, this command is
unambiguous. Finally, you can use the commandrOLDERPATH will always be replaced
by the path leading up to the folder containing the le. Therdore, we can now specify where
the current le is by using the macro command

FILENAME/PATHNAME.mar3450

or the command
FOLDERPATH/FOLDERNAME/FILENAME.mar3450

Basically, this is useful because if you are adding togethemwltiple les, you can put them
all in a folder with an interesting name and then name the outt les something like
\ FOLDERNAMEdat " so that they are all given useful names. This is nice becaugecan,
without loss of generality, be incorporated into a loop. Fially, the \ FOLDERPAT¢dmmand
is useful because you can use it to output les one directorypurom where all the di raction
data is stored.

15.8 Setting Colors in a Macro

There are several places in the program where you can pick tbelor of something using a
color selector. It is a little trickier to do. When you issue amacro command that wants to
know the color of something, you have to tell it what that colois. By far the easiest way
to gure out exactly what the macro line should loop like is tosimply record a macro where
select the color that you want and then copy the macro lines to your le.

But if you are curious exactly what the format for colors look like, you can see that
picking a color will generally look like this:

Listing 15.13: 'Use the Folder Syntax'

1 Polygon Mask Color?
2 red
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But it is a bit tricky trying to gure out exactly what colors w ill work. Technically, this
program will accept any color which tk will accept. The cola that tk will accept by name
are all described here:http://wiki.tcl.tk/16166 . But tk can also accept colors based
upon their RGB value. To specify a color by its RGB value, the @or must be preceded by
a # and followed by the RGB values in hexadecimal. Each of the ®B values range from O
to 255 in decimal or (00 to in hexadecimal). For example, puwe red would be speci ed by
the color # 0000. So we could replace the macro command abowéth the identical

Listing 15.14: 'Use the Folder Syntax'

1 Polygon Mask Color?
2 #ff0000

15.9 Little Tidbits

Any of the macro commands themselves are case insensitiveheTcommand GeT
fRoM hEaDeéRs just as valid as the command YET fROM hEADERd \ Get From
Header'. You don't have to sweat it.

White spaces at the beginning and end of the line are ignoredin the preceding
examples, the spaces separating macro commands from inpatues such as le names
are there only to increase readability. You don't need thent iyou don't want.

Any new lines in a macro le are ignored.
comment lines of the form ¥ A commefitare ignored.

You don't have to worry about explicitly moving from tab to tab in the computer
program. The computer program will move to the right automaically before performs
the action.

When you issue the macro commandB:" or \ E Fixed", the computer program will
automatically set the GUI to \Work in eV'. If you issue the command or lambda:" or
\lambda fixed: " then the comptuer program will set the GUI to \Work in Lambda
You can also explicitly set the GUI to either mode using the comand \Work in eV’
or \Work in Lambda

15.10 Macro Commands

Below is a table describing all of the macro command and exacivhat they do.
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Table 15.1: Macro Commands

Command | Followed By | E ect
Program State Macro Commands

Work In eV None Change the state of the program so that
the energy calibration parameter is in-
putted in units of electron volts. This
is called theeV mode of the program.

Work in Lambda None Change the state of the program so that
the energy calibration parameter is in-
putted instead as a wavelength in units
of angstroms. The conversion is donge
using the formulaE = hc=. This is
called the mode of the program.

Work in 2theta None Change the state of the program so
that caking and intensity integration
are done of the variable 2.

Work in Q None Change the state of the program so
that caking and intensity integration
are done of the variableQ.

Calibration Values

Data File: Files & Directories Loops over loading in each le.

Multiple Data Files & Directories Loops over loading several diraction

Files" les and adding them together.

Dark Current: Filename Loads in the Dark Current.

Q Data: Filename Load in the Q data.

Standard Q g data Loads in one of the standardQ les.
This command should be followed by
the name of the standard Q le as it is
displayed by the program in the menu
bar.

Get From Header: None Sets the calibration data to the value
stored in the image header.

Load From File: Filename Loads a calibration data le.

Previous Values None Loads the previously stored calibration
values.

Save To File Filename Saves the calibration data to a le.

XC: Number Sets thex center.

xc Fixed: Select or Deselect Sets whether or not to x the x center
while doing the t.

yc: Number Set they center.

Continued on next page::
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Table 15.1 { continued from previous page

Command Followed By E ect

yc Fixed: Select or Deselect Sets whether or not to x the y center
while doing the t.

d: Number Set the distance from the sample to the
detector.

d Fixed: Select or Deselect Sets whether or not to x the distance
while doing the t.

E: Number Sets the energy. If this command is rur
while the program is in mode, the
program will switch to eV mode.

E Fixed: Select or Deselect Sets whether or not to x the energy
while doing the t. If this command is
run while the programis in mode, the
program will switch to eV mode.

lambda: Number Sets the wavelength. If this commang

lambda Fixed:

alpha:
alpha Fixed:

beta:
beta Fixed:

R:
R Fixed:

pl
ph
Draw Q Lines?

Draw Q Lines
Color?

Select or Deselect

Number
Select or Deselect

Number
Select or Deselect

Number
Select or Deselect

Number

Number

Select or Deselect

color

is run while the program is ineV mode,
the program will switch to mode.
Sets whether or not to x the wave-
length while doing the t. If this com-
mand is run while the program is in
eV mode, the program will switch to
mode.

Sets the angle.

Sets whether or not to x the angle
while doing the t.

Sets the angle.

Sets whether or not to x the angle

while doing the t.

Sets the rotation angle.

Sets whether or not to x the rotation
angle while doing the t.

The pixel length of the image. This is
the width of one pixel (in microns).
The pixel height of the image. This is
the height of one pixel (in microns).
Sets wether or not to draw constaniQ
lines on the screen.

Sets the color of the constantQ lines
that are displayed on top of the di rac-
tion data and the caked data.

I

Continued on next page::
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Table 15.1 { continued from previous page

Command

Followed By

E ect

Draw dQ Lines?

Draw dQ Lines
Color?

Draw Peaks?

Draw Peaks Color?
Update

Save Calibration
Do Fit

Make/Save Peak

List

Use Old Peak List
(if possible)?

Select or Deselect

color

Select or Deselect

color

None

Filename

None

Filename

Select or Deselect

Draw the delta Q lines on the dirac-
tion image.

Change the color of the deltaQ lines
that are displayed on top of the di rac-
tion data and the caked data.

Display the t peaks on the diraction
and cake image.

Change the color of the peaks that ar¢
displayed on top of the di raction data
and the caked data.

Update the di raction image.

Saves the current calibration values ir
the GUI as plaintext ASCII to a le.

Fit the calibration values to a loaded
di raction image.

Creates a peak list just as happen
when doing the t, but instead of acu-
tally doing the t it saves the peaks as
an ASCII le for later use.

Uses the previously found peak lis
again when doing the t.

A%

[72)

Fit Number of Chi? | Number The number of slices around the
di raction image to pick and use when
doing the calibration.

Stddev Number The threshold for allowing a peak.

Di raction Display Options

Diffraction Data
Colormaps
Diffraction Data
Invert?
Diffraction Data
Log Scale?
Diffraction Data
Low?

Diffraction Data
Hi?

A color map name
Select or Deselect
Select or Deselect

Number from 0 to 1

Number from O to 1

Select the color map to use for the

di raction image.

Invert the color map that is being used
to display the di raction data.

Take the log of all the data points be-
fore displaying them.

The normalized intensity value which
will be scaled to %0 of the image bright;
ness when displaying the di raction im-
age.

The normalized intensity value which
will be scaled to %100 of the imags
brightness when displaying the di rac-
tion image.

D

Continued on next page::
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Table 15.1 { continued from previous page

Command

Followed By

E ect

Save Diffraction
Image

Filename

Save the di raction image to a le (pos-
sibly including Q lines and peaks.

Masking Macro Commands

Do Less Than Mask?

(Pixels Can't Be)
Less Than Mask:
Less Than Mask
Color?

Do Greater Than
Mask?
(Pixels Can't Be)

Greater Than Mask:

Greater Than Mask
Color?

Do Polygon Mask?

Select or Deselect

Number

color

Select or Deselect

Number

color

Select or Deselect

Sets whether or not to apply a less than

mask to the di raction data.
Sets the less than mask.

Sets the color that all the less than
masked pixels are displayed as on th
di raction image and caked image.
Sets whether or not to apply a greatel
than mask to the di raction data.

Sets the greater than mask.

Sets the color that all the greater than
masked pixels are displayed as on th
di raction image and caked image.
Sets whether or not to apply polygon
masks to the di raction data.

Polygon Mask color Sets the color that all polygon masked

Color? pixels should be displayed as on th
di raction image and the cake image.

Save Mask Filename Saves all currently loaded or drawn
polygons as plain text ASCII to a le.

Load Mask Filename Loads into the program from some le
one or more polygons.

Clear Mask None Removes any polygon masks that ar
in the program.

Cake Macro Commands
AutoCake None Make the computer pick a niceQ and
range and Cake the data.
Cake Q Lower? Number The lowerQ value in the range ofQ and

to use when caking. If this command
is run while the program is in 2 mode,
the program will switch to Q mode.

Continued on next page::
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Table 15.1 { continued from previous page

Command

Followed By

E ect

Cake Q Upper?

Cake Number Of Q?

Cake 2theta Lower?

Cake 2theta Upper?

Cake Number Of
2theta?

Cake Chi Lower?
Cake Chi Upper?
Cake Number Of
Chi?

Do Cake

Last Cake
Save Caked Image

Save Caked Data

Number

Number

Number

Number

Number

Number
Number
Number
None

None
Filename

Filename

The upper Q value in the range ofQ
and to use when caking. of the cake
data. If this command is run while the
program is in 2 mode, the program
will switch to Q mode.

The number ofQ bins to use while cak-
ing the data. If this command is run
while the program is in 2 mode, the
program will switch to Q mode.

The lower 2 value in the range of 2
and to use when caking. If this com-
mand is run while the program is in
Q mode, the program will switch to 2
mode.

The upper 2 value in the range of 2
and to use when caking. If this com-
mand is run while the program is in
Q mode, the program will switch to 2
mode.

The number of 2 bins to use while cak-
ing the data. If this command is run
while the program is in Q mode, the
program will switch to 2 mode.

The lower value of the caked data.
The upper value of the caked data.
The number of bins to use while cak-
ing the data.

Performs a cake of the data and dis
plays that caked data in the cake win-
dow.

Go back to the previous cake values.
Saves the cake as a popular image fa
mat.
input lename and the extension of the
lename should tell the program what
format to save the image as.

Saves the cake as ASCII data with &
verbose header.

The image will be saved as the

Continued on next page::
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Table 15.1 { continued from previous page

Command Followed By E ect

Cake Do Select or Deselect Sets whether or not to use a polariza|

Polarization tion correction when caking the data.

Correction?

Cake P? Number from 0 to 1 | Sets the value of the polarization cor;
rection to use when caking the data.

Cake Display Options
Cake Data Color map Sets the color map to use when display
Colormaps: ing the caked data.

Cake Data Invert?

Cake Data Log
Scale?

Cake Data Low?

Cake Data Hi?

Select or Deselect

Select or Deselect

Number from 0 to 1

Number from O to 1

Sets whether or not to invert the color
map when displaying the caked data.
Sets whether or not to use a log scale
when applying the color map to the
caked data.

The normalized intensity value which
will be scaled to %0 of the image bright;
ness when displaying the caked data.
The normalized intensity value which
will be scaled to %100 of the image
brightness when displaying the cakec
data.

D

=

Intensity Integration Macro Commands

Integrate Q Lower?

Integrate Q Upper?

Integrate Number
Oof Q2

Number

Number

Number

The lower Q value to use when per-
forming an intensity integration. If the
command is run when program is i
2 mode, the program will switch toQ
mode.

The upper Q value to use when per+
forming an intensity integration. If the
command is run when program is i
2 mode, the program will switch toQ
mode.

The number ofQ bins to use when per-
forming an intensity integration. If the
command is run when program is i
2 mode, the program will switch toQ
mode.

Continued on next page::
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Table 15.1 { continued from previous page

Command Followed By E ect

Integrate 2theta Number The lower 2 value to use when per-

Lower? forming an intensity integration. If the
command is run when program is irQ
mode, the program will switch to 2
mode.

Integrate 2theta Number The upper 2 value to use when per-

Upper? forming an intensity integration. If the
command is run when program is irQ
mode, the program will switch to 2
mode.

Integrate Number Number The number of 2 bins to use when per-

Of 2theta? forming an intensity integration. If the
command is run when program is irQ
mode, the program will switch to 2
mode.

Integrate Chi Number The lower value to use when perform

Lower? ing an intensity integration.

Integrate Chi Number The upper value to use when per-

Upper? forming an intensity integration.

Integrate Number Number The number of bins to use when per-

Of Chi? forming an intensity integration.

Integrate Q-I None Performs aQ | integration of the
di raction data. If the command is run
when the program is in 2 mode, the
program will switch to Q mode.

Autolntegrate Q-I None Picks a good range of) values and then
does the same thing as théntegrate
Q-1 command.

Integrate 2theta-I None Performs a 2 | integration of the
di raction data. If the command is run
when the program is inQ mode, the
program will switch to 2 mode.

Autolntegrate None Picks a good range of 2 values and

2theta-I then does the same thing as thg
Integrate 2theta-| command.

Integrate chi-l None Performs a | integration of the
di raction data.

Autolntegrate None Picks a good range of values and then

chi-l

does the same thing as théntegrate
chi-l command.

D

Continued on next page::
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Table 15.1 { continued from previous page

Command

Followed By

E ect

Save Integration
Data

Constrain With
Range On Right?

Constrain With
Range On Left?

Integrate Do
Polarization
Correction?
Integrate P?

Integration Data
Log Scale?

Filename

Select or Deselect

Select or Deselect

Select or Deselect

Number form O to 1

Select or Deselect

Saves out the intensity integrated data
as two column plain text ASCII with

the given lename.

Sets whether or not to apply a con-
straint to the Q or 2 vs. | integration

so that the integration is only done of
pixels who's value is within the in-

tegration range.

Sets whether or not to apply a con-
straint to the  vs| integration so that

the integration is only done of pixels
who's Q (or 2 ) value is within the Q

(or 2 ) integration range.

Sets whether or not to use a polariza
tion correction when performing an in-
tensity integration.

sets the value of the polarization cor;
rection to use when performing an in-
tensity integration.

Sets whether or not to use a log scal
when displaying the di raction data.

15.11 What You Can't Do With Macros

Just to be clear:

There is no way with a macro to zoom into the di raction data, the cake data, or the
intensity integrated data

You can't draw individual polygon masks and you can't removendividual polygon
masks. All you can do is load in polygon's from le and save athe current polygons

to a le.

When you load in multiple images at once by giving a le nametiwill only load in
images from the le with known extensions (ie .mar2300, .m&8450, .mccd, .ti ). So
give your les proper extensions before running macros.
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Chapter 16

Software Licensing

This program is released under the GNU General Public LicemgGPL) version 2. The
license can e found ahttp://www.gnu.org/licenses/old-licenses/gpl-2.0.ht ml. For
the most part, you are free to use and distribute this softwa. You are free to make any
modi cations to the code under the condition that any modi cations are clearly stated and
that the modi cates are are released under the GPL version 2.

This software manual is also licensed under the GPL. This iskat unconvential. | decided
to do so after reading several discussions online. FollogitNathanael Nerode's articleVhy
You Shouldn't Use the GNU FDL. | include in this paper the clause \for the purpose of
applying the GPL to this document, | consider “source codebtrefer to the texinfo source
and "object code' to refer to the generated info, tex, dvi, fif] and postscript les."[9]

This program uses the software package levmar for perforngin_evenberg-Marquardt
nonlinear least squares minimization. It is released undéine GPL. That package can be
found at http://www.ics.forth.gr/ ~lourakis/levmar/  .[6]

This program uses the function gepck() from the CCP4 package Diractionimage to
uncompress Mar data. It written by Dr. Claudio Klein.[4] This prgoram also uses the le
marccd.header.h form the Di ractionlmage packate. It released uner the GPL and can be
found at http://www.ccp4.ac.uk/ccp4bin/viewcvs/ccp4/lib/Diff ractionimage/ .[2]

This program uses the EdfFile library (EdfFile.py) for readhg and writing les of the
ESRF Data Format. It is is part of the PyMCA library and is licensed under the GNU GPL
version 2.[.7]

This program also uses W. Randolph Frankin's pnpoly() fun@dbn for performing a
point inclusion in polygon test. This code can be found abttp://www.ecse.rpi.edu/
Homepages/wrf/Research/Short_Notes/pnpoly.html  We are in compliance with his soft-
ware license which is reproduced below]

Copyright (c) 1970-2003, Wm. Randolph Franklin

Permission is hereby granted, free of charge, to any persootaining a copy of
this software and associated documentation les (the \Sefare"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or Becopies of the Software,
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and to permit persons to whom the Software is furnished to do, subject to the
following conditions:

Redistributions of source code must retain the above comt notice, this list
of conditions and the following disclaimers. Redistribuins in binary form must
reproduce the above copyright notice in the documentationddor other materials
provided with the distribution. The name of W. Randolph Fradin may not be
used to endorse or promote products derived from this Softeavithout speci c
prior written permission. THE SOFTWARE IS PROVIDED \AS I1S", WITH-
OUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LI-
ABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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Chapter 17

Comprehensive Exam, part 1 -
Covers: basic physics, special
relativity, classical mechanics

17.1 Problem

\A solid spherical ball of uniform mass density (e.g., a podball) rolls without
slipping down a ramp which makes anglewith the horizontal. (a) What is its
translational acceleration down the ramp? (b) If the coe cent of friction between
the ball and the surface is = 0:1, for what value of will the ball slip rather
than roll without slipping?" { Travis Norsen

Figure 17.1: The Ramp.

Figure 17.1 shows a free body diagram of this situation. Simeve are dealing with a pool
ball, Icy = %mrz. | will calculate the torque about the contact point betweenthe ball and
the ground. X

= r F: (17.1)
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About this point, the only force applying a torque is the weibt force:
= rmgsin : (17.2)

We can use the parallel axis theorem to calculate the moment mertia of the ball about
the contact point:

| = Zmr?+ mr?= Imr? (17.3)
The linear acceleration is related to the angular acceleian of the ball about the contact
pointby a=r . We canuse =1 to calculatea:
| = Imr2 2= rmgsin : (17.4)
= = g : :
We get
— 5 H
a= 3gsin (17.5)

To gure out part (b), we can apply F = ma to our free body diagram. We rst do the
direction parallel to the ramp:
ma = mgsin Fs (17.6)

We know that the ball will just have slipped (or be about to slp) when the force of friction
just counteracts the downward pull of gravity anda = O:

Ff = mgsin : (17.7)

Doing the direction perpendicular to the ramp gets us:

N = mgcos (17.8)
Since
= N; (17.9)
we know that
mg sin mg CoS: (17.10)
Or,
tan : (17.11)
The largest value of is
tan = : (17.12)
17.2 Problem
\A planet orbits the sun under the in uence of the gravitatioal force
F = Gt/'Tm (17.13)
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Suppose the planet has orbital angular momentum Write down an expression
for the e ective potential energy (i.e., the gravitationalpotential energy plus the
term from the kinetic energy associated with the angular mon), and nd the
value ofr (call it R) for which the e ective potential is minimized. What does
it mean physically ifr(t) = R? What is the period of the orbit? Now consider
small oscillations ofr aboutR. Approximate the e ective potential nearr = R
as a parabola, and nd the resulting period of small oscillans. Sketch the shape
of a not-quite-circular orbit. Is it what you expect?"{ Travis Norsen

The potential of the system is
u(r) = F (17.14)

With k = GMm. We can write the total energy (or Hamiltonial) of the systemas
H = mjrnj?+ 3Mjryj®+ UGrm  ruj) (17.15)

If we letr =r, ry and change to a coordinate system where the center of the st is
the center of mass, than

mr,+ Mry =0: (17.16)
From this, it follows that
M
rm = g Mr (17.17)
m
rm = ey Mr' (17.18)

Plug these back into equation 17.15 gets us
H=1 jrj®+ U(r): (17.19)

With = mM=(m + M). This is the equation of just one particle with mass in the same
potential. We can treat this two body system as though it werea one body system where
the one particle has the reduced mass. Writing in spherical coordinates gets us

r=rfp+r +rsin 2 (17.20)
Since we are dealing with a central force, we can without los$ generality assume that all
motion takes place in a plane such that = 0 and so that there is no” component to the
velocity. When we do so, we get

r=rp+rl (17.21)

Our Hamiltonian becomes

H=21vZ+U(®r)=3 (r®+r?2)+ U(r): (17.22)

1
2
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Since angular momentum is conserved:

L=r v= =r2"=1L (17.23)
where in the last step we used equation17.21. Since= 0, we have = constant as is
necessary for angular momentum to be conserved. Thus,

L=r2: (17.24)
Plug this into equation 17.22 get us
1 .2 L2
H=3r"+ 572 + U(r) (17.25)
This is the equation of a particle in one dimensions in the eaive potential
L2 k L2
Ve = +U(r)= —+ 17.26
2r 2 ") ro 2r? ( )
The potential is minimized atry when
dve
=0 17.27
dl’ o ( )
Or, ,
k L
e TIo
SO
2
ro= —: 17.2
0= ¢ (17.29)

When the potential is at a minimum, the particle experience o radial force. This means
that the particle undergoes uniform circular motion.
Next, we can calculate the velocity using equation 17.24.r8ev = r, we have

L=r3_=ro (17.30)
or L K
V= =T (17.31)
The period is ,
- # - Zk'z- (17.32)

We can Taylor expandV (r) around ro. This will be a good approximation for radii nearry.
First: )
. 1k?

k L2 Kk
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Next:
d2V(r0)_ 2k L2 k4 3

= 4= = 17.34
dr2 s rg L6 (17.34)
Thus:
kK2, K2 17.35
Ve ——+ :
() 52 * 5 ( )
with r=r ro. We know that
dve dve k4 2
F= »s= r= oA IC r (17.36)
We can solve for r gets ,
.k
r=Asin Ft (17.37)
This has a period of ,
L
T=2 kT: (17.38)

This is exactly the same as equation 17.32, the period of arbWhen we plotr = ro+ r,
the perturbed potential, the trajectory looks something ke my diagram in gure 17.2. This
trajectory looks like an ellipse, just as expected.

Figure 17.2: A diagram of the
path of the perturbed orbit.
Note that it roughly looks like a
very circular ellipse with the sun
at one focii.

17.3 Problem

\Alice and Bob are at opposite ends of a spaceship whose resigthL = 20cs

(i.e., twenty light seconds). They have previously synchmiaed their watches.
When her watch reads noon, Alice rolls a ball to the right, t@sd Bob, at speed
u = 4=5c. The ball moves at constant speed until Bob catches it. Theegtion is:

what does Bobs watch read at the moment he catches the ball@ ffitk is: you

have to answer by working it out entirely from the frame of refence of Charlie,
for whom the spaceship is moving to the right at speed= 3=5c. (Hint: what

does Bobs watch read when Alice rolls the ball? How long dadsake the ball to
get to him?)" { Travis Norsen
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Figure 17.3: A space time diagram of the reference frame whéhe rocket is at rest

Figure 17.3 shows a space time diagram of this situation asewed from the rocket rest
frame. We will call this the unprimed reference frame. The pblem is easy to solve in this
frame. Alice's and Bob's clock are synchronized in this frae If the ball leaves Alice at
t =0, it will travel a distance L at velocity u at arrive at Bob at a time

t=l=u (17.39)

Using your numbers, we see that = 25s from which it follows that Bob's clock will read
25s after 12 o'clock (which I am callingt = 0. We can analyze this whole situation instead

tO Event 2

t°=0;t=0 t°=0;t= Lv=¢

Figure 17.4: A space time diagram of the reference frame whdhe rocket is moving to the
right with velocity v

from a reference frame where Charlie is at rest. A space timé&agdram for this situation is
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shown in gure 17.4. This will be the primed reference frameThe distance between Alice
and Bob will be contracted

p
L= L 1 v2=¢ (17.40)
Remember thatmoving meter sticks shrink Also, Bob's clock will read a time earlier than
Alice's clock. 1 think the saying isleading clocks lag According to Charlie, When Alice's
clock readst = 0 Bob's clock will will say

Lv
=X
Finally, the velocity of the ball, as measured from Charlis' frame has to be corrected.

The relationship between the velocities is calculated uginthe relativistic velocity addition
formula

t= (17.41)

W= u+v
1+ uv=e’
We will call the time interval between Bob's clock when the blhleaves Alice and when it

arriving at Bob as measured in Charlie's reference frame &% We can calculate it by setting
the position of the ball equal to the position of Bob and solwig for time:

(17.42)

ut® = L% wt° (17.43)
+ P——
71Jlrjuv\i 5 = L1 Vet (17.44)
L (1+ uv=c
0 = Uéﬁ (17.45)

We will call this same time interval as measured by Bob's cléct. Bob's clock is moving
slow becauseMoving clocks run slow The reason why we know that Bob's clock is the one
that is moving in this situation is because what is a time interval between is Bob's clock
when the ball leaves Alice (as viewed in Charlie's frame) arfiob's clock when the ball gets
to Bob. Since Bob is present at both these events, he measuthe proper time interval
between these two events. We can thus use the formula

(proper) = (improper) g 1 ve=¢ (17.46)
to show that
i = & T V=g (17.47)
L uv
t= o 1+ (17.48)

If Bob's clock initially reads -Lv=c and the time interval ist, the time that Bob's clock will
reads when the ball gets to him is

1+

Lv, % (17.49)

L
c2 u

R €

This is just what we need!
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17.4 Problem

\The point of suspension of a pendulum (mass), lengthL) is allowed to move
in the horizontal direction. It (the point of suspension) isconnected to a spring
which exerts a restoring forcéd= = kx. (a) Use the coordinatesx (the displace-
ment of the point of support) and (the angular displacement of the pendulum bob
from vertical) to write the Lagrangian and the equations of ation. (b) Linearize
the equations of motion by assuming small oscillations; whangth would an or-
dinary simple pendulum need to have in order to oscillate dig same frequency
as the one here?'{ Travis Norsen

Figure 17.5: A diagram of the
physical setup.

If we call (x%y9 the spacial coordinate of pendulum bob, we can write theseardinates
as

0

X+ L sin (17.50)
L cos (17.51)

X
y

0

where x is the displacement of the spring and is the angle swept out by the spring (see
gure 17.5). We can write the Lagrangian as:

L =T U (17.52)
= Imx®+y® mgy’ Ix° (17.53)
= Im(x*+2Lx-cos +L*2)+ mgLcos  3kx? (17.54)
The equations of motion are
@L d @L
= - = = 17.
6 & @ 0 (17.55)
@L d @L
=" - = = 17.
ox & & 0 (17.56)
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Plugging into the rst equation gets

mL X —sin mgL sin % mLxcos + mL?_ =0: (17.57)
This simpli es to
9. X o _q-
L sin 3 cos =0: (17.58)

Note that this reduces wherx = 0 to the equation of state for a regular pendulum. Plugging
into the second equation gets

kx % mx + mL _cos =0: (17.59)
This becomes
kx mx mL®cos + mL 2sin =0: (17.60)
This equation reduces when = 0 to the equation of state for a regular spring. We can
take a small angle limit by lettingcos ! 1landsin ! . When we do this, our equations
become
g X
= — =0 17.61
k
HX L*+L2 x =0 (17.62)

It is not at all clear to me what | am supposed to do to these eqgtians to make the angle
dependence took like a simple harmonic oscillator, so | amtngure now to gure out the
frequency of oscillations.. ..

17.5 Problem

\A bucket full of water rotates at uniform angular velocity! . It is near the
surface of the earth, so there's a uniform downward eld. What shape does the
surface of the water make? Be as speci c as you capTravis Norsen

We can assume that the bucket has been rotating for a su ciety long time that the
water will all be rotating along with the bucket at constant angular velocity. We can also
assume that the system has been rotating long enough that itak come to equilibrium.
Figure 17.6 shows a free body diagram for a small chunk of waten the very surface of the
bucket. It experiences two forces: gravity and a normal foecfrom the rest of the water. We
know that the particle is not moving up or down so

X
F,=0: (17.63)

We know that it is experiencing uniform circular motion, so

X
Fy = mr! 2 (17.64)
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Figure 17.6: A free body diagram of a
bucket rotating with angular velocity ! .
The free body diagram is of some small
chunk of water a distance from the axis of
rotation. There are only two forces acting
on the chunk of water.

From equation 17.63, we see that

N sin = W: (17.65)
From equation 17.64, we see that
N cos = mr! 2 (17.66)
Dividing gets g
tan = o2 (17.67)
We can read from the diagram that
rdr
tan = — = — 17.68
yo dy ( )

We can combined these equations to get

dr g

dy = oz (17.69)
|1 2
dy = 'Erdr: (17.70)
Integrating gets us
= Yo+ }W—Zrz- (17.71)
Y="Yo 29" .

whereyj is the height of the water at the axis of rotation. We see thathis is the equation
of a parabola. | think that this means the surface area will ba paraboloid.
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Chapter 18

Comprehensive Exam, part 2 -
Covers: E&M, Electrodynamics,
Circuits and Optics

18.1 Problem

\A charge +Q is distributed uniformly along thez axis fromz = ato z = + a.
Find an exact expression for the electrostatic potential fgoints along thez axis
(with z > a). Then use this to write an approximate expression for the famtial
at a point (r; ) not (necessarily) on thez axis. The approximation should be a
power series expansion i@=r and should be accurate to fourth order ia=r." p

Z
I >
(ammmm e —— 2
2= az=0 2= a
¥ 4.0 Figure 18.1: A rod.

We can calculate the potential due to the small bit of chargehewn in gure 18.1.

1 dz?®
dv = — 18.1
4 4z 20 ( )
Integrating over all of the rod gets us the total potential
z
1~ 2 dz®
V(z) = 18.2
@=7~ T (18.2)
= — logiz 29j?, (18.3)
4 o
z+a
= | 18.4
4 0 Z ( )
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This expression is valid forz > a. Of course, forz < a, we have charge immediately at our
point so our potential function would be in nite. If we let u = a=z we have

1+u
V = lo
7,9 1 4

(18.5)

We can expandV in powers ofu around u = 0. To do so, we have to calculate a whole
bunch of derivatives. Let

f(=log 1 - (18.6)
Then,
f(0)=0 (18.7)
Next, we calculate
fYu) = ; S u)(l (1u;2u)( L) (18.8)
_ 2
T @+uw@ u (18.9)
f40)=2: (18.10)
(18.11)
Then we calculate
2( 1 1+u+(1 wu
fRu) = ( )((1 +( u)2(1) (u)2 ) (18.12)
4u
= A+ 20 ) (18.13)
f%%0) = 2: (18.14)
(18.15)
Then we calculate
_ 4 A 2)( I+u)+(1  u)
f 0%0y) = TN CETE + ESNEGERNE (18.16)
12u°% + 4
= AESDCIRNE (18.17)
£ 9%00) = 4 (18.18)
(18.19)
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Then we calculate

A+ U@ uP4u (12024 4)3(1+ w1 w?( 2u)
£ 00QQy) = DR (18.20)
_48u(l+ u?)
= Ao (18.21)
£000%) = 0 (18.22)
(18.23)

Then we calculate

_ 1+ uw*1 w1+ u?+u2u) u@+uda@+ui@ wi 2u
f 00°0Q) = 48 A+ W e

(18.24)
o But+10ut+1

T (L+ Wi ups

f 00%%9) = 48: (18.26)

We can now do the expansion

(18.25)

V@)= g1 (18.27)
=1 f (0)+ f YO)u + @uﬁ fo;(:O)u3+ fo:({!@)uﬁ fo;@uﬂ i (18.28)
=i 2u + %u2+ z—?u“+ D (18.29)
=4i0% 1+% 22% ';4 (18.30)

Where in the last step we use the fact thaQ = 2 a . Finally, we can write the potential due
to this charge distribution at any arbitrary point as the expansion of Legendre polynomials:

b3
V(r )= Ar'+
1=0

Pi(cos ) (18.31)

|
r|+l

Note that this expansion was derived with the assumption ofzimuthal symmetry, which is
valid in this situation. SinceV'! Oasr!1 , we haveA, =0:

V(r )= B P(cos ) (18.32)

r|+l

We can consider the special case of= 0. We exploit the special property that P;(cos0) =
P(1)=1. Sincez=rcos ,r = zwhen =0. Thus,

B0 Bl Bz B3 B4

V(r:Z;O):T+?+r_3+r_4+r_5+::: (18.33)
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By examining our Taylor expansion for the potential on thez axis, we recognize that

Bo = 2 (18.34)
0
B1=0 (18.35)
_ Q&
B. = 7,3 (18.36)
B;=0 (18.37)
_ Q&
Bs= 7,5 (18.38)
(18.39)
So,
V()= Q1! Po(cos ) + la 2P2(COS )+ 1a 4P4(cos )+ (18.40)
4 or 3 5
18.2 Problem

\A long coaxial cable is made from two conducting cylindritashells of radiusa
and b. (The space between them is empty.) At one end of the cableg thner
conductor is attached to the positive terminal of a batterypétential +V ); the
outer conductor is attached to the negative terminal (pot&al zero). At the other
end of the cable, the two conductors are connected througheaistor (resistance
R). Note that the inner conductor will have some charge per wrlength, and
will also have some current owing through it. Find the eledt eld in the cable
fora<r<b. Then nd the magnetic eld in the cable fora<r<b. Then nd
the Poynting vector fora<r < b . Then integrate to nd the total rate at which
electromagnetic eld energy ows along the cable. Finallygay something about
where this energy comes from and where its heade¥.

The current can be calculated ak = V=R The voltage across the resistor falls o linearly.
The reason why we know this is because resistors are made upainear materials so that
the amount of resistance is proportional to the length of theesistor. We could think of
dividing up the resistor into two parts, as is shown in gure 8.3. The resistances shown on
the two parts of the resistor in the gure are linear as desik Since the voltage ata is V,
the voltage ats will then have decreased by the voltage times the resistance

s a
V=V | —R (18.41)
b s
=V (18.42)

If you notice, this is the linear decrease that | stated aboveNow, what we are interested in
is the voltage everywhere inside the cylinders constraindyy the boundary conditions:
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~— | _—
Vol
/ \
l\ \ /
T T 8
_—|
I , =
Figure 18.2: Two cylinders connected by
R a resistor. The sketchy dashed line is an
Amperian surface that we will use later.
Figure 18.3: We can imagine divid-
sap H bsg ing the resistor into two smaller re-
ba E b a sistors. This is used to calculate the
5 S —> voltage at some point in the middle
b > of the resistor.

V=+Vforx=a
V =0for x=h,
V(s) = ﬁv across the resistor foa s b

Of course, one obvious solution to Laplace's equation foregee boundary conditions is

(on

Sv (18.43)

V(s) = 3

O

fora s b By the 1st uniqueness theorem from Grith's book, we know tlat this must

be the only unique solution for the potential.
We can calculate the electric eld as

®

E=r V= \é: Vo (18.44)

b s

)
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To calculate the magnetic eld, we can draw an Amperian loop ithradiusa s baround
the rst cylinder. This is the silly da?hed line in gure 18.2 We use Ampere's law:

B d= olen: (18.45)

This gets us
_ ol
= 54
Using the rule where you put your thumb in the direction of thecurrent and your ngers
curl in the direction of the magnetic eld, we get

(18.46)

ol A
2s
We can now calculate the Poynting vector, which is the energyer unit time per unit area
that ows in some direction.

B = (18.47)

S = i(E B) (18.48)
0
1 \% ol A
=— — — 8 18.49
~ b a 2s (") ( )
A2
= mgz (18.50)
We can calculate the total energy owing down the area betweethe cylinder per unit time:
dE ¢ £2%n y
— = = — =1V =1°R 18.51
gt SS da .. 250 a)sdsd (18.51)

This means that energyl 2R per unit time is carried by the eld down the cylinder. This
energy must be taken to the resistor and dissipated as Joulatimg. The energy is used to
heat up the resistor.

18.3 Problem

\An AC voltage source (amplitudeVy, angular frequency! ) drives a circuit con-
sisting of a resistor R) in series with a capacitor C). What is the amplitude
of the voltage across the resistor? Describe qualitativeshat will happen (i.e.,
what it will sound like) if the voltage source is replaced byradio and the resistor
is replaced by a speaker.y

kircho 's Law gives us the equation we need:

Voe'™ % IR =0 (18.52)
CVe"® Q QRC=0 (18.53)
(18.54)
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We guess a solution of the form

Q= ke (18.55)
with k some constant. Plugging in gets us we get
CVoe™™ k& itk ¥ RC =0 (18.56)
. CVo
| = = -
CVo Kk(1+iRC)=0k T+ IRC (18.57)
Thus,
— iICV o it Vo it
" 1+iRC Tl RC (18.58)
The voltage drop across the resistor is:
— — VoR it
V=IR= Re‘ (18.59)

ic
The formula shows that there is a larger voltage drop acroshe resistor for larger angular
frequency.

Suppose the voltage source was replaced by a radio and theistes by a speaker. The
radio would output a signal with many di erent frequencies.The radio would make a sound
of each particular frequency proportional to the voltage dwp across it for that particular
frequency. Since our circuit is set up so that the voltage dpoacross the speaker is bigger for
larger frequencies, our speaker would preferentially pldyigh frequency sound. We would
hear the radio with a bias towards the high frequencies. | thk this circuit is called a high
pass lter.

By the way, the derivation would have been much easier if | udeimpedance, but |
couldn't remember exactly how to calculate it and | didn't have my Optics book.

18.4 Problem

\ Finn has a toy magnifying glass designed to look at bugs. Hscylinder whose
bottom is a platform where you can put a bug, and whose top isoawerging lens.
With the cylinder sitting on a table, you can then look downdm above and see
a magni ed image of the bug through the lens. Suppose the ffdeagth of the
lens is 10cm, and the platform where the bugs sit is 5cm behthd lens. Draw
a diagram showing the primary rays and indicating the size drocation of the
image that is seen. If Finn puts his eye a distanat above the lens, what is the
magni cation? What range of magni cations is possible? Howveould the device
be modi ed to achieve greater magni cation?"h

Figure 18.4 shows an optics digram of the toy with the primaryays!. Note that f
labeled in the diagram is the focal length. We havd = 5cm and f = 10 cm Using similar

Mravis, | think gured out the hint that you were getting at. |  gured out the diagram on my own.
Afterwards, | went to the Wikipedia page on convex lenses andsaw the same diagram. But | came up with
all of this work before going there
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Figure 18.4: The bug, the lens, and the virtual imageEeew, bugs!

triangles
r_h
a d
and
I _D_
a+f f
So,
a—g I
" h
and
L _h
dp+f f
d
'=f
d .
| 1 F = h:

| believe that we de ne the magni cation M as

I
M =
h
Finally,
1

M = :
d
1 7

[+ h

(18.60)

(18.61)

(18.62)

(18.63)
(18.64)

(18.65)

(18.66)

(18.67)

Sinced=f = 1=2, we haveM = 2. | don't think there is any range to the magni cation
(is this a trick question?) We could increase the magni catin by increasingd=f either by
increasing the distance between the bug and the lens or by deasing the focal length.
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18.5 Problem

\Find the transmission coe cient for light waves passing tliough a pane of glass,
of thicknessd, at normal incidence. Hints: To the left, there is an incidehwave
and a re ected wave; to the right there is a transmitted wavenly; inside the
glass there is a wave going to the right and a wave going to fe IExpress each
of these waves in terms of its complex amplitude, and relateetamplitudes by
imposing suitable boundary conditions at the two edges. Neg dispersion and
assume = . Itis simplest to characterize the light by its wave numbemn the
glass. (This is problem 8.39 in Griths E& M, 2nd ed.) Note the similarity to
a certain standard modern physics type of problem (re ectidtransmission from
a rectangular potential barrier with \height" V, ). Does the example here with
light correspond toE >V, or E <V(? Is there an analog with light for the other
case, too? m

C -E —
B|)—> MTA V:_ BTIC

ﬁ

o
1B

z=0 z=d 2 Figure 18.5: This gure shows

A — ~ the glass barrier and the ori-

s v entation of the waves in the

P — three sections. This whole setup

9‘(/ 7 is very similar to the example
in Grith's book called Re ec-

tion and Transmission at Nor-

glass mal Incidence

There is an incident and re ected wave to the left of the glassThere is also an incident
and re ected wave in the glass. There is only a transmitted we to the right of the glass.
This is shown in gure 18.5. Outside the glass, the waves tral/with velocity ¢ and wave
vector k. Inside the glass, the waves travel with velocitw = c=n and wave vector = nk
(since the angular frequency is the same inside and outside skc = ! = v). Thus, the
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incoming and re ected waves are:

E, = Epe®® g (18.68)
B, = %Eo,éﬂz 'y (18.69)
Er = Eréel ¥ g (18.70)
Bgr = (—1:E0Rei( kz 1)y (18.71)

Inside the glass, we have
Ewr = Eour €(Z "% (18.72)
Bur = %EOMT d(? !t)9 (18.73)
Ewr = Eour €l 2 'R (18.74)
Bwmr = %EOMR dl z My (18.75)

The transmitted wave is

Er = Egre®® g (18.76)
Br= %EOTe‘("Z "y (18.77)

Since we are assuming that,; = gass, OUr boundary conditions are:

Eperdz=0 = Epgaie] z=0 (18.78)
Betiz=0 = Briddiez=0 (18.79)
middiez=d = EqigntJz=d (18.80)
B middie jz=d = Br:ig:mjz:d (18.81)

with Eer = E| + Er and E nigage = Evr + Em7T and Eright = E-. Pluggin' in:

Eoi + Eor = Eomt + Eowmr (18.82)
2Eoi  tEor = 2Eomt  2Eomr (18.83)
And:
Eour €9 + Eoure 9 = Egrekd (18.84)
"Emr€?  2Eowre '? = 1Egre (18.85)
We want to calculate _
R = E—‘: (18.86)



and
Eor °

T= 2
EOI

(18.87)

Remember that since the medium thaEgr is in is the same as the medium thakEg is in,
there are no constants in the front of thel term. Using equation 18.82 and 18.83, we get

1+n 1 n

Eol = > Eowt + Eomr (18.88)
1 n 1+n
Eor = > Eowr + Eomr (18.89)
(18.90)
Using equation 18.84 and 18.85, we get
1 1+n_ €k
E = — Eor — 18.91
oMt = 5 0T 54 (18.91)
1 n 1_ ¢«
EOMR - é n EOTe id (1892)
From this, we get
_ (n + 1) 2 eikd (n 1)2 eikd
Eol = i gd e Eor (18.93)
After doing some math, we get
16n?
T= (n+1)4+(n 1)* 2(n+1)2(n 1)2cos(2d) (18.94)
16 2k2
= . 18.
(+K°+( K* 2( +WA  KZcos2d) (18.99)
| calculated that
imT =1; (18.96)
d 0
as is needed. We can now calculat in just the same way:
1 n 1 1+n_ €k 1+n 1 n 1 ghd
Eor = > 3 o Eor g t— 3 - EOTe id (18.97)
Simplifying a bit, this becomes:
n> 1, _. .
R = - ( 2i)sin(d)Eor (18.98)
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From which we calculate that

Er °_ Eor > Egr °
Eo  Eor Eo
4(n%  1)%sin’(d)
(n+D4+(n 1)* 2(n+21)%(n 1)2cos(2d)
2(1 cos(2d)

_ (18.101)
K ? 4 —x > 2cos(2d)

R = (18.99)

(18.100)

By working it out, | showed that
IimR=0 (18.102)
d o

| will save you the tedious algebra, but su ce it to note that | worked through all the math
and T + R =1, as is required.

| believe that this example corresponds t& >V scattering since most of the light goes
through the glass and is transmitted (just as how foE >V most of the light is transmitted.
| don't think there is an optical analog for anE <V barrier.

18.6 Problem

\A circular coil of wire (radius R) carries current | and lies in thex y plane
with its center at the origin. (So thez-axis is its symmetry axis.) Find an exact
expression for the strength of the magnetic eld along tleaxis. Now: a second
identical coil (parallel to the rst) is to be placed with itscenter atz = d. It is
desired to make the magnetic eld in the region near the cemtef the coils (i.e.,

near z = d=2) as uniform as possible. Find the value a which accomplishes
this." ...

Figure 18.6 I
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Figure 18.6 shows the physical setup. Biot-Savart's Law 1slus that
Z
1= d° r
B e L
(r) 4 r2

Since the di erent parts of the coil have their x-y componers of the magnetic eld cancel
out, we have

(18.103)

B(r)=B(2)2 (18.104)
We can solve Biot-Savart's equation:
I z dl°cos
B(z) = - 18.1
(@)= 5 (18.105)
ol cos
=—— 2R 18.1
1 T2 (18.106)
IR 2 1
0 (18.107)

2 (R2+ 72)3=2

Notice that even forz < 0, the eld points up! If we put another coil at a heightd, the
magnetic eldfor0 z dis

olR?2 1 1

We calculate @B R ; - |
_ 0 Z z
@Z_ 2 (R2 + 22)5:2 + (R2 + ( d 2)2)5=2 (18109)
And
@B _ (IR? 3 . 1522
@z 2 (RZ+ z2)52  (R2Z + 72)7=2
3 15d z)?
(RZ+(d 2)9)52 + RE+(d 2772 (18.110)
Note that o8
=, 40 (18.111)
@zzzg
So we will set -
@5 40 (18.112)
@z 2= 4

and see what condition arises fai. This value will correspond to the most constant magnetic
eld. When we do so we get

(R*+(9A+ f(9)?*=0 (18.113)

which simplies to d= R. So, we can makd3 vary least atz = g if we setd = R.
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Chapter 19

Comprehensive Exam, part 3 -
Covers: Modern Physics, Quantum
Mechanics, Particle Physics

19.1 Problem

What is Compton scattering? What role did it play in the earlylays of quantum
theory? You probably recall an argument that treats the ploot and electron as
classical particles, and derives the correct shift in waweslgth for the scattered
photon. What can you say (or guess or speculate or vaguelytskg about how
this process can be treated in a fully quantum mechanical WayYou shouldn't
really have to do any calculations here at all. The last quest amounts to: in

broad, qualitative strokes, how might you apply some of themn advanced stu

you've learned recently to analyze Compton scattering?)

0 Figure 19.1: The Compton scattering dia-
gram. Here, we have a particle of wave-
length coming in from the left. It scat-
ters o a particle of massm and scatters
at angle . The other particle recoils with
velocity v and scatters at an angle .

Figure 19.1 shows the diagram that we need. A photon treatedsa particle with wave-
length comes in from the left at the speed of light, collides with a particle at rest, and
scatters o at some angle . After the collision, the photon has wavelength . We can apply
conservation of relativistic energy and momentum (where wase the quantum formulas for
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the photon: p= h= and E = hc=). Conservation of energy gets us

he,, mc? = h—(o: + mc?: (19.1)

Conservation of momentum gets us
h h
— = —C0s + mv cos (19.2)
h . .
—SIn = mv sin : (19.3)

Squaring and adding the equations:

omaz= M hees F, - hsin (194
h?2 2h? h?
= — —5C0s + —: (19.5)

We can solve the energy conservation equation farand use this to write °m?v? in terms
of and °

hc he 2
224 — 2
m<c'= —+mct — (19.6)
2 2
1 L= m’c , (19.7)
c e+ me2 hg
2 2
v_1 m’c , (19.8)
4 c2 he y me2 he
So,
V2
m?v? = ( ’m3c") = (19.9)
ct |
_ he , hc? 1 m2c '
= —+md — ¢ mimg 2 (19.10)
2 2 2
= I phme, phme Y (19.11)
Thus,
2 2
7Z 7Z pme hmc 2h— = % 2h— cos + % (19.12)
( ° Imc=h(l cos) (19.13)
°= +(h=mo(1 cos) (19.14)

According to Gri th's Particle textbook:
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What nally settled the issue [of whether the electric eldsi quantized as particles
called photons] was an experiment conduced by A. H. ComptarlB23. Compton
found that the light scattered from a particle at rest is shéd in wavelength,
according the equation

°= + 1 cos) (19.15)

where is the incident wavelength, °is the scattered wavelength, is the scat-
tering angle, and
¢ = h=mc (19.16)

is the so-called Compton wavelength of the target particlmg@ssm). Now this

is precisely the formula you get (Problem 3.24) if you treaight as a particle
of zero rest mass with energy given by Planck's equation, asgbly the laws of
conservation of (relativistic) energy and momentum{just Wwat you would for an
ordinary elastic collision. That clinched it; here was diret and incontrovertible

experimental evidence that light behaves as a particle, dre tsubatomic scale.

1st order Higher Order

Figure 19.2: The Compton scatter-
ing Feynman diagrams. The rst
diagram is the 1st order Feynman
diagram. The second is one of the
many higher order diagrams.

In order to treat Compton scattering properly, you have to daw Feynman diagrams for
the process and calculate the numbers associated with therfihe sum of all the numbers
would be the amplitude for Compton scattering to happen. Figre 19.2 shows the rst order
Feynman diagram for this process and one of the higher ordesrins. | am not exactly sure
how you would use the Feynman calculus to gure out the wavebdgth shift for a particular
angle since things like direction don't matter in Feynman digrams. ..

19.2 Problem

Calculate the lifetime (in seconds) for each of the four = 2 states of hydrogen.
Hint: You'll need to evaluate matrix elements of the forn 1q0jyj 211i, and so
on. Remember thatx = rsin cos ,y = rsin sin , and z = r cos . Most of
the integrals are zero, so think before you calculate.
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Suppose we have a Hamiltonia#it = By + H1. We can write an arbitrary solution as a
sum of the eigenstates oflg:
. . X i (0) 4 .
j (Di= c()eE ETEO;: (19.17)

n

According to time dependent perturbation theory, we can wte the time dependent constants
out front as 7

- t )
G)= 1 — dWE” ED=EOR (9EQ (19.18)
0

We have ,
E0OIEPT = jo (1)) (19.19)

This is the probability of making a transition from the initial to the nal state in time t.

We will apply this formalism to the case of the hydrogen atomni an electromagnetic
eld. We will treat the EM eld as the perturbing Hamiltonian H; and use the hydrogen
eigenstates as the unperturbed basis.

We will deal with some initial statejii that is an energy eigenstate of the hydrogen atom
and jfi as some other energy eigenstate. Our goal will be to calcudathe probability per
unit time of making a transition from this state to a lower enegy state by emitting a photon
in any direction. Eventually, we will want to calculate the Ifetime of the excited state.

The perturbing Hamiltonian is

e h &€ 2
| _
Hq! meCA‘ Tt 2meczA\ (19.20)
With r I
X 2 = gk e ik
A= ¢ =— & )P+, (k)P (19.21)
Kk ' ’
SinceH; is independent of time, we have
1 4 O ey 2 2
jhfj0iij 2= = dt®E BT WA i (19.22)

0

1sif((EP EOy=29)
— jhf e 4jiij (19.23)
~2 ( Ef(o) E i(O) ) =2~ L

This is the probability of having a transition fromi to f with the emission of some particular
photon of wave vectork. The time t imposed by experimental set-ups allows us to without
loss of generality take the large time limit. In that case, wean use the representation of

the Dirac delta function )
1 sin“(t
1sin(ta) _ (19.24)

lim
tl1 ta2

176



to write the transition probability as

t (E? EP)=2+)

— jhf e 4jiij 2 (19.25)

. . - ....2_
tI!|lm jhf jOjiij2 =

The total probability of having a photon emission is equal tahe sum over all photons of the
probability of that photon being emitted.
X X
P = jhf 0, jiij? (19.26)
k
The sum over accounts for the two polarizations of the photons. Followigp the discussion
in the Townsend book, we are supposed to apply periodic bouwarg conditions to space.
This quantized the photons so that their wave vector is alwag/of the form

kL =2 ny keL=2n, k,L=2n, (19.27)
with ne;ny;n, =0; 1, 2;:::. When we do this, we nd that the number of states with
wave vector betweerk and k + dk in the solid angled is

L 3
> k?dkd (19.28)
with L the size of our box. Usinge = ~! , we can write the number of states with energy
betweenE and E + dE as: ,
\VAR
—dE 19.2
23 %Gd d (19.29)
Thus, our total probability of having a transition is
Z Z 0) Oy _
X X X t (EQ EO)=< V12
P= jhtjO, (0)jiij? = de d W& ) )J'hrfJ'I‘h(t)J'iij2

S

(19.30)
Of course, the total nal energy is just the energy of the phain plus the energy of the
electron: E” = E,, + E. So we can write our delta function as

~2

Kk

E, + E E,
(EQ EL)=2~) = o o " =2~ (E (En En)) (19.31)
This delta function kills one of our integrals:
Z
X = 2t V1?2
_ . - R 2 .
P = = jhf jK 4jii] @ (19.32)

Thus, the probability of making the transition per unit time is
Z
X =2 AE:
— . . R 2 . .
R = “—jhf jH 4jii ] PRk (19.33)
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SinceR is independent of time, we know that that if we haveN atoms an amountdN will
decay in a timedt such that

dN = NRdt (19.34)
N(t) = N(0)e ® = N(0)e F (19.35)

Thus, the lifetime of our atom is = 1=R. Now, we calculate
HJH gjii = by, jhne sl mejH gjngs 1 mij O (19.36)

Note that the second term in the perturbing Hamiltonian

a1 eah . €

MeC i 2meC?

A2 (19.37)

will contribute nothing to our integral because the terms int are all of the form &. & ,
a{<_ {< , and a{< 8. . None of these take us from state with no photons to a state witl
ph’oton’. Thus, our inner product becomes

hy . jhne;le;mejH g 1 miij o =
’ r

Z
e 2 ~ -kr . -~ . .-
mece v d3r N ;¢ ;Mg e (k, ) i_r ni;|i;mi(hlk; Ja)l/(; JOl) (1938)
with
hly. ja{(, joi = hhy. jy. i: (19.39)
We make the approximation
e Kl 1. (19.40)

This is called the electric dipole transition. Now, we can &sa trick to simplify equation 19.38.
The trick is:

2

M o] = g—;ki (19.41)
X
= %;ki (19.42)
]
1 X
=5 (B [B R+ [y Ril6) (19.43)
j
(19.44)
A i~
= — P~y = —hH (19.45)



Therefore,

gl megping s mii = — gl megE o &iin; 1 mii (19.46)
[ o :
= —(En,  En) el mejRijnis 1 mi (19.47)
= jl h’]f,'f,mfjk,jn“h,mﬂ (1948)
Thus,
h‘lf;lf;mfjpjni;li;mii = il I‘nf;lf;mfjf‘jni;li;mii (1949)
Therefore, we can replacgr = p in equation 19.38 with i! . When we do this, we get
z r— 'z z
X =2 2~ 12 2 vizg
R = - ° W ezg &r em T (K) nim, 2 )ic- (19.50)
| 3 X Z Z ) 2
= ﬁ d°r ns ;ls ;mfr (k, ) nili;mj d (19-51)
We can writer  as
_ xxiy X 1y x X + iy
r = p— p— + p— p— + ,Z 19.52
r ~ 2 | d 2 ~ 2 | d 2 z ( )
4 L+ x iy
=r 3 —F’Q—Yl; 1 _pz—Yl;l + ;Y10 (19.53)
If we are dealing with the 2 to 1s transition, equation 19.51 contain an integral of the form
Z r— . :
3 4 xFly xo ly
d°rR 1;0Y0;0r ? —pé—Yl; 1 —pz—Yl;l + ZYl;O Rz;oYo;o (1954)
Inside of this are three summed integrals of the form
Z
d Y., Yoo (19.55)

This integrates to 0 because of the orthogonality of th&'s. Thus, R! Oand !1

Or, the 2s ! 1s transition is forbidden, at least to rst order. Next, we can calculate the
2p! 1stransition. It contains the integral

7z r
dPrR 1.Yg.of

oo|4>‘

+ [
—Xpé—le; 1 iIé’é—le;lJ’ Yo R2aYim, (19.56)

We can again exploit the orthogonality of theY's
Z

d YimYim = mm (19.57)
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to rewrite this integral as

r— Z
1 y+iy x 1y oo
:_)) _pz— mj;1 _pé— mj; 1t 2 m;;0 drr R1;0R2;1 (19-58)
0
The R dependence integrates to
21 r 328
o drr 3R1;0R2;1 = é?ao (19'59)
so the absolute value squared of the large integral is
3 . 2 L i 5 L mi 12 mio §a%: (19.60)

Now, we can assume that a photon is equally likely to be emitlewith any polarization,
from which we deduce that

hZi=hli=hl: (19.61)
But we also know that is a unit vector. So,
hZi+hZi+hli=1 (19.62)
Thus 1
h%i=hli=hli= 3 (19.63)

Since all we are interested in is the average life time of th&éate, we can take the average of
our integral and it become, for all them;:

Z 2
1 1 215 215
d3r ng It ;mfr (k; ) nislismi = :_;) é _gag: Ea(z) (19'64)
Thus, we have 7
13 X 215 )
Rop 1s = 2¢c2 ﬁao d (19.65)

There are 2 polarization states. We are interested in decayso all of space so the in nites-
imal solid angle integrates to 4. Thus, our integral becomes

1317

Ropt 15 = ?ﬁaoi (19.66)

Note that ~! = Ep,  Eis = 3mec® (1 1=2?) so

2 8
Rop 1= 3 5mf°2 (19.67)

and 1
2 15 = R : (19.68)
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19.3 Problem

Estimate (or really: put a bound on) the ground state energyf blydrogen using
the variational principle, using a trial wave function of te form: (r) = Ae .

| can't crack this problem but I will write down what | did. The whole trick to this
problem is to calculatehEi. We know is at least as large as the ground state. Therefore,
it is an upper bound on ground the state energy. Once we calaté hEi, we can nd the b
that minimizes this function to get the lowest upper bound. kst, we need to be properly

normalized: 7 z .
1= 2dr = A2e 2741 2qr (19.69)
r 0
1=4A 21 (19.70)
4 (2bs3 '
3=2
A% = ® (19.71)
Now, | will calculate hEi. We know that the Hamiltonian is
|4 ~2r 2 eZ
| _
! 5 ; (19.72)
hEi=hjHj i (19.73)
= i Ae o ~10 2 @ e Ae "4t 2dr (19.74)
T 2 rz@r @r '
Z, ] )
=4 A% dre ® > 6 1dor’+4brt  re? (19.75)
0
Now, using the Gaussian integral equations from the Townserbook!, we get
_ r— r r
. 2b ¥ 2 1 1 3 &
= — — - — -+ — - .
B =4 r 2 % Y @ @ w070
— r__
2 ~?13 e
=8b — 2—r§ %5 b (19.77)
2 b
= 1—23—b 2¢? 2—b: (19.78)

Unfortunately, this equation is wrong since it grows inde fitely negative for su ciently large
b. This is unphysical. If I could have gotten the true equationl would have set

@ _.
Qi =0: (19.79)

| would have solve for this forb and then plug s value into hEi to nd my upper bound for
the ground state energy. Do you have any idea what | am doing amg in this problem?

MTravis told me how to do the last Gaussian integral over the plone { thanks for the tip!
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19.4 Problem

You've learned about the Born approximation in the contextf 8D scattering
problems. It is possible to de ne a Born approximation alsamf 1D problems,
where instead of wanting to calculate the di erential crossection, the relevant
predictions are just the re ection and transmission coe cientsR and T. Explain
why the Born approximation expression foR is:

Z 2

m 2 gy dx (19.80)

R ok
Then use it to calculate the re ection probability when thecattering center is a
rectangular barrier of \height" V, and width a. In what limit(s) do you expect
the answer to be accuraté?

Ah, problem 13.4 from Townsend's book. A solution to the ondimensional Schredinger
equation is 7

(x) = Ae* + dx°(3(x;x°)2~—TV(x°) (x9 (19.81)
where @
@%G(x;xo}+ K*G(x;x%= (x x9Y: (19.82)
To prove this, all | have show that it is a solution to
B x)=E (x) (19.83)
whereE = ~?k2=2m.
L P—
(x) = om @X + V(x) , (X) (19.84)
= %% Ae”‘X; dx°(3(x;x‘§2~—TV(x°) x9 + VX (X (19.85)
~2k2 ikx ~ . 2m
= ﬁAe" o dx¥{ (x x9 KGxxN=ZVE) x)+ V(X)) (X)
(19.86)
22 22 % 2m
= oA VOO - dXBGx)ZVX) (X)+ VO(X) (19.87)
Z
= % Ae* + dxoG(x;x()2~—TV(x() (x% (19.88)
= E (x): (19.89)

2By the way, there is an error in your formula. The fraction in front is m=~2k but you wrote m=~k. Oops

182



We can integrateG(x; x% from just below to just abovex = x°Note that the k?G(x; x% term
integrates to O in this in nitesimal range and the delta fun¢ion integrates to 1:

Z x=x9 @ Z x=x9 Z x=x9
—G(x;x9 + k?G(x;x9 = (x x9 (19.90)
X= XO @% X= XO X:XO

@G @G

— — =1: 19.91
@X x=x9 @X x=x0 ( )

We can now show that a solution foiG(x; x9) is

(G
= iek(x x9) x> x O
- 1o ik(x X9 y<yxO

2ik

(19.92)

To do so, we show that this is a solution fox < x © x = x% and x > x % First, observe that
for x < x “we have

@G(x-xf’) + K2G(x;x% = —kzék(x X9 + k—zék(x ) =0 (19.93)
@z ’ 2ik 2ik '
as expected. Fox > x % we have
@ . 2 . — k? ik(x x9 k? ik(x x9 _—
@G(x,x% k*G(x;x9% = i © * e =0 (19.94)
as expected. Finally, we calculate
@G @G _ K kx xo K L kxox9
@X ye  @X o 2K exo 2K C o1 (1999

as is needed for our function to work ak = x% So this is a valid solution forG.
We can now apply the Born approximation:

(x) Aekx: (19.96)

We use this approximate solution on the right side of equatin19.81. We will then take
the x I 1 limit of the equation to nd the re ection term. In this limit , we have:
G(x;x9 = Zexp( ik(x x9):

2ik

Z
. 1 2 i
(), AL+ dxe Oy (x9)Aek (19.97)
x! ~
- LT ek om
| ikx ikx 0
| ALY+ Ae 1 dx e —V(x9 (19.98)
Thus - z )
R o eV (x)dx (19.99)
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We will now work with the potential barrier

(

Vo O<x<a )

V(X) = :
() 0 elsewhere
Solving forR gets
Z 2
_ m ? ok
R= = e Vodx
_ mVo 2 i o a2
~2k 2ik 0
omV, 2 efka 1?2
T ~2K2 2i
. omv 2 gka g ika 2
T 22 2i
= e sin“(ka)
VO 2 )
= — n°(k
°E sin“(ka)

(19.100)

(19.101)

(19.102)

(19.103)

(19.104)

(19.105)

(19.106)

This formula is valid in the large energy limitE >> V 4. In fact, the Townsend book gives

the exact expression folf =1 R as

- 1 [a)
T= 1+(VZ=E(E Vo) sin( 2m=2)(E Vo)a)

Or,

_ (VFHEE W) sinz(p (2m=-2)(E  Vo)a)
1+(VZ=E(E V)sinX( 2m==2)(E Vo)a)
In the large energy limit, this equation reduces to

P J— )
(Vo=2E)?sin’(" 2mE=~2a) Vo .,
! = k
Rl v 6 1+ O(Vo=E)? g Sk

just as we predicted.

19.5 Problem
Let 0 1
Eob 0O A
@0 E, O0A
A 0 Eg
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be the matrix representation of the Hamiltonian for a threstate system using
basis stategli, j2i, and j3i. If the state of the system att =0 ig (0)i = j2i,
what isj (t)i? How about ifj (0)i = j3i?

The rst partis easy. Note that j2i is an energy eigenstate of the Hamiltonian with eigenvalue

(energy) El: 0 10 1 0 1
Eo 0O A~ 0
@0 E; 0A@A =g, @A (19.111)
A 0 E, O 0

Since it is an eigenstate, we know that (t)i = j2i. j3i is not an eigenstate so we will have
to write it as a linear combination of energy eigenstates. Whegin by nding the energy
eigenstates of the Hamiltonian:

Eo 0 A
0 E; 0 =0: (19.112)
A 0 Eo
Or,
(Eo )AE: ) AXE: )=0 (19.113)
So = Ej;,and =E; A. The = Eg+ A solution leads to:
0 101 01
Ecb O A a a
@0 E; OA @pA =(Ey,+ A) @pA (19.114)
A 0 Eg C C
or
Ega+ Ac = (Eg+ A)a (19.115)
a=c (19.116)
The middle equation says thato= 0. An eigenstate is
: . (.
JEo + Ai = p—z(jll +j3i) (19.117)
The = Ep A solution leads to
0 10 1 01
Eob 0O A a a
@0 E, 0OA@PA =(E, A)@A (19.118)
A 0 Eg Cc c
or
Ega+ Ac=(Es A)a (19.119)
a= c: (19.120)
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Another eigenstate is
jEo  Ai= pl—é(jli j 3i): (19.121)

The nal eigenstate (which we already saw) is
JEqi = j2i: (19.122)
We can write j2i as a linear combination of the eigenstates:
j2i = pl—z(on+ Ai j Eo AI): (19.123)

We can easily do the time evolution to the eigenstates

i ()i =€) (0)i (19.124)
= =2 (19.125)
= é”t=~pl—§(on+ Ai j E; Ai) (19.126)
= pl—é(é(E°+A>t=~on+ Ai o AEES A (19.127)
= %éEO‘:~ e @A i+ @A T+ e AT 3] (19.128)
= €FoF~ (j sin(At=~) j1i + cos(At=—)j3i): (19.129)
We nd that

jhlj (t)ij? = sin?(At=~) (19.130)
ih3j (1)ij? = cos?(At=~) (19.131)

19.6 Problem

What is Bell's Theorem and what does it prove? (No need to rggtulate the
mathematical derivation, which is a standard thing in sevalrtexts. Just summa-
rize the structure of the argument, and then explain its imipations.)

The general setup of Bell's inequality is a physical processere two spin 1/2 particles are
at the same time. Because of conservation laws, we know théiet total spin in any direction
must be 0. If one particle is measured to be spin up in some diten, the other particle
must be spin down. For momentum to be conserved, the two pactes must leave in opposite
directions. We can set up two Stern-Gerlach machines to megae the spin components of
the two particles along any axis that we wish.

Bell's theorem requires assuming that there are hidden vables (the spin of the particles)
and that there is locality. When you assume these two featusgyou can assign to the particles
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a de nite value of spin for three di erent spacial componerg. We might not know what the
value is before measuring it, but it is there. The particle mst already know going into the
SG machine what its spin is. Because we set the SG machines &part, we know form
locality that the measurement of one patrticle's spin cannoa ect the measurement of the
other particle's spin. If you do the book keeping, you can shothat these two assumptions
leads to predictions about the probability of certain spin rmasurements. We can use or SG
machine to measure spin along three separate axis. We willllcthese three axisa, b, and
c. We can set up the rst SG machine to measure rst particle's gin along one of these
axis and the second SG machine to measure the second partchpin along the other axis.
Bell's inequality says that

P(+a;+b) P(+a;+Cc)P(+c;+b) (19.132)

where P (+ a; +b) is the probability of the rst SG machine measuring spin +a and the
second SG machine measuring spinbtetc. The important point is that standard quantum

mechanics predicts probabilities in certain situations tat violate this inequality. And this

inequality has been put up to experimental tests. The Expaments are in agreement with
guantum mechanics but in violation of Bell's inequality.

From these experimental results, we must conclude that sonwd the assumptions that
Bell uses in deriving his inequality are wrong. Since Bell ssmes that there are hidden
variables and that the world works in a local way, we must cothede that it is impossible for
the world to both have hidden variables and be local.
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Chapter 20

Comprehensive Exam, part 4 -
Covers: Statistical Mechanics,
Thermodynamics, Astrophysics

20.1 Problem

\Here is a very simpli ed model of the unwinding of two-straded DNA molecules:

a zipper has N links; each link has a state in which it is closedth energy 0 and

a state in which it is open with energy. We require that the zipper can only
unzip from the left end, and that the link numbes can only open if all links to

the left(1;2;:::;s 1) are already open. Show that the partition function is given
by

_ 1 exp[ (N+1)=kT]
1 exp( =kT)

X (20.1)

and then nd the average number of open links in the limit  KT." { Travis
Norsen

The partition function is

X -
Z e ErekT: (20.2)

r

The sum is over all possible states. For this example, we carake a list of all possible states
and their particular energy. There is only one state where lathe links are closed and it
has energy 0. There is only one state where one link is open ahtias energy . There is
only one state where two links are open and it has energy.2Zlhe argument continues until
we get to the nal state where all links are open and the energg N =kT . Using this The
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partition function is

Z=€&+e * +e 27 4114 g (N DT 4 g N=T (20.3)
X

Z = e =T " (20.4)
n=0

It is a mathematical fact that

X\l 1 RN +1
S= R" = ﬁ' (20.5)
n=0
From this: (N 1) =T
1 e (N*)=
Z = 1T & = : (20.6)
The probability for each state is
e Er=kT
Py = o E =T - (20.7)

The average number of open links is equal to the weighted asge of the number of open
links:
X‘l e n =kT

N = e Er=kT:

(20.8)
n=0
In the large limit, all the terms are 0. The average number of open links 8. This makes

sense. When the system is very cold, the protein will stay misintact.

20.2 Problem

\A cold white dwarf is held up against gravitational collagsby the pressure of
degenerate electrons. What is the total energy of a gad\bfon-interacting, non-
relativistic degenerate electrons con ned to a sphere ofdaus R? Assuming the
white dwarf contains equal numbers of neutrons and protonswrite this energy
in terms of the massM of the star. The other main contribution to the energy
is the gravitational binding energy (which is of course nefj&e). Write down an
expression for the total energy of the star as a function Bf (and other relevant
parameters). Show thatE (R) has a minimum for some particular value oR,
and solve for this to nd the mass-radius relation for a whitelwarf. (Check your
answer by con rming that, unlike chocolate cakes, white dvs shrink when you
add mass to them.)"{ Travis Norsen

Stars are big so boundary e ects are negligible in comparisdo the e ects due to the matter

well inside the star. Therefore, the particular boundary caditions we pick won't matter.
We will therefore solve the time independent Schredingergeation for the electrons in the
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star as though our star is a cube of length. and volumeV = L3. We will use periodic
boundary conditions:

x+Lyz)= (xy+Lz)= (xy,z+L)= (xy;2): (20.9)

We can approximate the electrons as a free gas. The reason wthis is a reasonable as-
sumption is because the positive charge from the protons e fairly evenly distributed so
their net e ect will be weak. Approximately, the only net e ect due to the protons will be to
con ne the electrons within the star. The solution to the Scledinger equation is therefore

| goxrkyyrkaz, (20.10)
The energy of the electron is
~2k2
= 20.11
me ( )
wheremg is the mass of an electron. To satisfy the boundary conditisn we have
2 2 2

Electrons obey the Fermi exclusion principle so only one eteon can occupy each quantum
state. The number of possible integers, for which k, lies in the range betweerk, and

ky + dky is .
2—de: (20.13)
The total number of states with wave vector betweerk, and ky + Ky, ky and ky, + Ky,
and k, and k, + Kk, is the product of the number of possible integers in the threenges.
We have to add an extra factor of 2 since each of these state czan be lled up with two

electrons each of di erent spin:

Ny =

Lo Lk

- \4 3, — X 241, -
> > =2 5 ysdkk = kK (20.14)

L
WPk =2 2—de

The total number of states in this same range with energy beeen and + d is

jodj=]dkji= % d =, % 1d = %(2”12)3:2 2d (20.15)
We calculate the electron with highest energy as
Z
N = Of d = %(2"12)3:2% 2. (20.16)
It follows that , pes
- g2 ~_N (20.17)

T2 e2m=v
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We can calculate the total energy due to electron degeneraag
Z

Eq= d (20.18)
0
We get
J z, V 2me)32 o, 13573 4=3_2\| 53
Eq= — ~“d = - ; 20.19
1T, 23 5258 mJV2=3 ( )

For every electron, there is a proton and a neutron (of roughithe same massn,. Therefore,
we haveM =2myN. Also,V = § R 3.

1 37=3 M 5=3

4= = — : (20.20)
52143m>>m, R?
We can write E4 as
KM 52
Eq = (20.21)

whereK is a constant of proportionality.

Next, we consider the gravitational potential energy. We caimagine building up the
star from thin shells one at a time. When we add the shell of rags r and thicknessdr, the
gravitational potential energy due to this shell is

GM (r)dM _
-

M is the mass of the already assembled star of radiusnd dM is the mass of the thin shell.
The mass of the interior sphere is equal to the volume times ehdensity soM = g‘ r 3%.
The mass of the shell igIM =4 r 2dr%. The energy associated with the shell is

du(ry= dM  V(r) = (20.22)

GiriVéar2dry 16 °GM? ,

du(r) = - 3v2 rdr: (20.23)
The total potential energy is the integral over all the shed
VA R
16 2GM 21 3GM?
U= du= ———>-R°= = ; 20.24
0 3vZ 5 5 R ( )
The total energy is thus
KM 52 3GM?2
= + = — . .
E=Egs+U R2 R (20.25)
We set @E=@R 0 and solve forR to minimize the energy. We nd that
10 K
3 GM 1= (20.26)
Plugging in for K, we nd that
2 3= 1
R= - : 20.27
32143m3=m, GM 133 ( )
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20.3 Problem

\Suppose a star were made of an ideal gas composed of molecoiemassm
at a uniform temperature T. By considering hydro-static equilibrium, develop
a di erential equation that should be satis ed by (r), the mass density as a
function of radius. (You shouldn't bother solving the equah { the work here is
just setting up a well-de ned DE with only the one dependenanable, (r).)" {
Travis Norsen

We will consider a small rectangle chunk of gas a radiusfrom the center of the star. The
rectangle has a widthdA and a heightdr. The mass density in the chunk is (r). Gauss'
Law says the gravitational force on the chunk is

GM dAdr
F= " (20.28)

whereM is the mass inside of the chunE. The mass is
r

M = (r)4 r 2dr: (20.29)
0
The pressure di erence between the top and bottom of the chindue to the surrounding
gas must exactly cancel out the gravitational force in ordefior there to be equilibrium:

GM (r)dAdr
——!

[P(r+dr) P(r)dA= (20.30)

The idea gas law says that
P(r) = n(r)kT (20.31)

wheren(r) is the number density of the gas. we know there is only a radidependence to
the pressure because of the radial symmetry of the star. Theass density is related to the
number density by (r) = mn(r). Our equilibrium equation becomes

KT M A
[(r+d) (D) dA= Lz)ddr: (20.32)
We note that q
(r+dr) (r)= adr (20.33)
SO our equation becomes
d(r)_ Gm r 2 :
ar - kT . (r4r<dr (r): (20.34)
Rearranging and the di erentiating both sides of the equa%’n with respect tor gets us
ﬁr a = 4r “dr (20.35)
KT d L, d 2 ,& .,
cm 2ra+r ar +r az - 4r < (20.36)
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20.4 Problem

\The latent heat (or "heat of fusion) for the ice-water phas transition is 80
calories/gram. What is the probability that a bucket of purevater (no ice) at
zero degrees Celsius spontaneously forms a one gram ice 2uUlelravis Norsen

The heat of fusion is the negative of the energy per unit masequired to convert water to
ice. Thus, to create a gram of ice requires adding to the systeQ = 80 calories. Google
says thatQ = 330J. We know that the change in entropy for this transitionis
Z
dQ _ Q
S= === 20.37

T T ( )
where we have used the fact that the temperature does not clganduring the freezing. The
de nition of entropy is S = klog(). We know that

P/ (20.38)

Formally, the probability of this transition happening is equal to the number of micro states
for which this is possible divided by the total number of miar states:

p = ez (20.39)

total

For our example we have
SO + S = k |Og( freeze) (20.40)

Where S, is the entropy of the liquid with no frozen ice. Thus,

e(So+ S)=k eS(J:ke S=k

P = (20.41)

total total

Now, we know that an overwhelming number of the possible mrstates will involve the
whole system in its equilibrium situation where there is juswater. In this situation, the
entropy is Sp. In equation form, we have

So  klog(' totar) (20.42)

So
ol €07 (20.43)

Therefore, to good approximation the probability for our irtial state to spontaneously form
an ice cube is approximately
P e Sk KT (20.44)

With Q =330J, k=1:38 10 #J=K,and T =273:15K , we have
P el (20.45)

This is very small!
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20.5 Problem

\In The Physical Universe, Shu discusses the "Missing-Magsoblem' on pages
259-60. Summarize what you know about this topic that goegdied what's in
Shu's (rather outdated) book."{ Travis Norsen

There have been two major developments that | am familiar wit. First was the discovery
of gravitational lensing. Studying dark matter with gravitational lensing is kind of like
studying the shape of a piece of glass by looking through it drseeing how the background
is distorted. General Relativity says that that the trajectory of light is bent by the presence
of gravity. Actually, | think we are supposed to say that ligh still goes in straight lines and
it is instead the structure of space time that gets bent by theresence of matter.Anyway,
| will wave my hands here because | don't know much General Révity. By it is fair to
think of light as begin de ected by gravity.

i%ﬂf(kf{é\‘f

//\\

DIANE Y

Figure 20.1: The shady looking man in the gure represents damatter and is supposed to
remind the reader that the jury is still out on what exactly dak matter is made up out of.

The classic example of this is shown in gure 20.1. It shows aagiram of the most famous
example of gravitational lensing. A star sits behind a bunclbf dark matter. The light from
the star leaves isotropically but only particular directims of light will be bent enough to
come back to the earth. What the person on earth sees when hels into the sky is a ring
of light from the star. These rings are called Einstein ringand have actually been observed
in the sky.
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Of course, Einstein rings are seen only when the alignmentvsry close to perfect so
they are rare. In real life, we usually only see multiple imagg of the object. This is enough
information to learn quite a bit about the dark matter lens. This techniqgue where multiple
lenses are involved is called strong gravitational lensingnd has been used to learn much
about the structure of heavy clumps of dark matter.

0 N
\

M

Figure 20.2: The shear correlation of galaxies caused by Wegravitational lensing. Each
of these galaxies are supposed to come from a unique sourc®'svishape is distorted only
slightly.

After strong lensing came weak lensing. Not always will a graational lens be so strong
that multiple images are seen. Often,the dark matter will jst distort the shape and orien-
tation of a galaxy. The dark matter adds a radial shear corration to the ellipticity of the
galaxies. Where there are big spots of dark matter in the skihe galaxies will preferentially
be distributed around the dark matter as in gure 20.2. By meauring shear correlation, we
can learn about the structure of the dark matter.

This is a statistical technique. Were it not for dark matter,one would have no reason to
believe that there was any correlation between the shapesgsdlaxies. After all, the galaxies
in a particular spot of the sky come from vastly di erent dephs so how could their galactic
evolution have any relation to one another. When we found thicorrelation, it was very
strong evidence for the existence of dark matter. And now itam be used a method for
mapping out the dark matter in the universe.

It is actually also being used as a way to get better statistic about regular galaxies
in the universe. The fear with gathering statistics about gaxies by spotting them in the
electromagnetic spectrum is that there will be systematicreors associated with what types
of galaxies we will see. When we instead gather statistics @it galaxies that we nd using
gravitational lensing, the thought is that there are fewer gstematics involved.

The second major development in the missing mass problem carnom an observation
of what is called the bullet cluster. A large challenge facghthe theory of dark matter is
the empirical fact that whenever we see dark matter in the skyeither from the velocity
distribution of stars in a galaxy or from lensing), we also seregular matter in the same
place. This lead some to hypothesize that instead of thereibg mass that we can't see, that
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instead our knowledge of how how gravity works is wrong on tHarge astronomical scales.
Theorist have proposed alternate gravity theories which yrto explain the dark matter e ects
without the need for invisible matter.

Very convincing evidence came out against the viability of odi ed gravity when scien-
tists found in the sky two galaxies that had collided with edt other. What is exciting about
the collision is that it vastly changed the trajectory and tre shape of the visible matter. This
can be seen in the electromagnetic spectrum. But the dark ntat was relatively una ected
by the collision and kept going in its normal trajectory. Ths can be seen by weak lensing.
The dark matter and the regular matter are separated in the gk The simulations of what
this should look like if dark matter exists look perfectly lke the observational data. But it
is very hard to explain this observation with a modi ed gravty theory.

Another thing. Apparently physicists have gured out what percentage of the universe
is dark matter. | think it is like 30%. | have no idea how this isdone.

20.6 Problem

\The heat capacity of non-metallic solids at su ciently lowtemperatures is pro-
portional to T3. Explain why. Also explain why metals behave di erently.'{
Travis Norsen

The speci c heat caused b;/ lattice vibrations is of the fornt{") = AT3. The speci ¢ head
due to the electron gas i &= T. The speci ¢ heat for a non-metallic solid is entirely due
to lattice vibrations and is equal to AT 3. The speci ¢ heat for a metal is due to both the
electron gas and the lattice vibrations and is therefore equito T + AT 3.

f
1:0

1
\
{
—
—
kT

Figure 20.3: The Fermi function for a free electron gas.

We can understand the lattice vibration'sT® dependence as follows. Rief write down
the Hamiltonian for all of the positive charges in a metal. Hehen describes how we can
do a change of variables to make the Hamiltonian have the forof 3N independent simple
harmonic oscillators. Each of these is a phonon{a matter waun the metal. Each oscillator
has angular frequency , and energy ;, = (n, + %)~! . This is equation 10 1 11 in Rief.

At temperature T, most of our phonons will have energy less thail. As an equation,
we have~!  kT. The total number of phononsN will be proportional to the volume in!
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space containing all the phonons (with energy less thal'). The volume is proportional to

I 3 which is proportional to T3. Thus, the average energy is proportional to the number of
states times their energy. This is proportional toT . Since the energy is proportional tal 4,
the speci ¢ heat (the change in energy versus change in tenmpire) must be proportional
to T3.

The only thing that could cause a wrinkle in my argument is a fet brought up in Rief
that there is a certain cuto angular frequency that phononscan not exceed. Since our
upper bound angular frequency is-! kT, we can safely assume that all of our phonons
will have angular frequency smaller than the cuto .

We can understand the electron gas dependence as follows. We can approximate the
behavior of the electrons in a metal as a free electron gas. its lowest energy state, all
the electrons are in the lowest allowed energy states. As themperature increases, more
and more electrons begin to occupy higher and higher energyates. Reif proves that for
an electron gas, the probability of a state of energy being occupied is equal to the Fermi

function f with .

F()= NERFEE (20.46)

This is equation 9 16 4. For relatively small T, we sketch this function in gure 20.3. We

see that Electrons with energy roughly withinkT of the edge energyr will move to a higher

energy state. There are roughlg( ¢)KT of these electrons wher&( ) is the density of levels

per unit volume with energy . Therefore, the total energy change will be approximately
equal to the number of states times their change in energy:

E G(g)kT KT/ TZ (20.47)

We know that the density of levels is a property of the metal imuestion and is not a function
of temperature. The speci c heat must be proportional to terperature.

20.7 Problem

\Considering the earth as a thermodynamic system, it's cleghat over geological
timescales the total energy is (roughly) constant: on aveye, the earth radiates
heat out into space at the same rate it absorbs heat from thensBut what about
the second law of thermodynamics? Why doesn't the entropytioé earth increase
steadily over geologic timescales? And hence: what fact acts about the earth
or the universe as a whole is/are ultimately responsible ftie viability of life on

earth?" { Travis Norsen

We know that entropy always goes up. Since the entropy on theagh remains roughly
constant, it must be the case that entropy somewhere else gagp. The increase in entropy
comes from radiation leaving the earth. The light that the so gives to us is highly ordered
and has a low entropy. The light and heat that the earth radiags is fairly disordered and
has a high entropy. Therefore, we conclude that the only wayhat life on earth can stay
nice and orderly is by creating a mess somewhere else (outeace).
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Appendix A

How and Why to Think About
Scattering in Terms of Wave-Packets
Instead of Plane-Waves

Travis Norsen, Joshua Lande
Marlboro College, Marlboro, VT 05344

S. B. McKagan
JILA and NIST, University of Boulder, CO, 80309

Abstract

We discuss \the plane wave approximation" to quantum scatteng and tunneling using
simple one-dimensional examples. The central point of theaper is that the calculations
of re ection and transmission probabilities in standard t&tbook presentations involve an
approximation which is almost never discussed. We argue thé should be discussed ex-
plicitly, and that doing so provides a simple alternative wg to derive certain formulas that
are used in the standard calculations. We also calculate,rfa simple standard example,
expressions for theR and T probabilities for an incident Gaussian wave-packet of artrary
width. These expressions can be written as a power series &xgpion in the inverse packet
width. We calculate the rst non-vanishing corrections expicitly.

A.1 Introduction

Scattering is arguably the most important topic in quantum gysics. Virtually everything we
know about the micro-structure of matter, we know from scattring experiments. And so the
theoretical techniques involved in predicting and explaing the results of these experiments
play a justi ably central role in quantum physics courses atall levels in the physics cur-
riculum, from Modern Physics for sophomores through Quantn Field Theory for graduate
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students.

Given the importance and centrality of this topic, we shoulde particularly careful about
clarifying its physical and conceptual foundations { both ér ourselves and for our students.
It is the main contention of this paper that these foundatios are not typically as clear as they
could be. The speci c problem we address is the fact that thecattering particle is almost
always described as a (suitably modi ed) plane-wave, ratihgéhan a physical, normalizable,
nite-width wave-packet. As we will explain in the following section, this standard plane-
wave account is fraught with conceptual problems which haveeen documented to cause
confusion and errors among students, and which may also causonfusion among experts.

In the following section, we present a simple alternative waof deriving certain formulas
(which play a central role in the calculation of various scagring probabilities and which are
usually justi ed in a complicated and confusing way in the cotext of the plane-wave account
of scattering) from a straightforward analysis of the kineratics of wave-packets. We thus
demonstrate that many of the conceptual problems associaltavith the plane-wave analysis
(and some pointless mathematical complications, to bootaa be quite simply avoided { all
while preserving the mathematical simplicity and accesdllty of the standard plane-wave
calculation.

In subsequent sections, we present what we believe (surprgly) to be some novel calcu-
lations of the scattering probabilities when the incident prticle is represented by a Gaussian
wave-packet. The novelty consists in exact expressions fibre re ection and transmission
(R and T) probabilities: these can be expanded in powers of the inger packet width, and
the individual terms can be calculated analytically. We thig show explicitly that the usual
plane-wave expressions fdR and T emerge in the limit of an in nitely-wide packet.

That, of course, is no surprise. But often (in that small mindty of texts which even
discuss it) the wave-packet analysis is presented as an afit@ught { e.g., a more physically
and conceptually realistic way of re-deriving the plane-wa expressions foR and T. This
conveys the impression that the wave-packet analysis is gnh sort of heuristic, with the
\really correct” plane-wave results emerging when one takethe packet width to in nity.
But this impression is both false and dangerous. The reallyorect probabilities are the
ones based on the actual properties of incident particlesné these will always be properly
represented as nite-width wave-packets. It is the plane-ave expressions which are an ap-
proximation to the wave-packet probabilities, not vice vesa. There is thus harmony between
the mathematical and the conceptual: the thing that is propdy regarded as fundamental
(both conceptually and in terms of providing the rigorouslyexact predictions for experi-
ments) is wave-packets. Hence our conclusion: it is in terno$ wave-packets that we should
think about scattering ourselves, and introduce scatterimpto students.
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A.2 The plane-wave account and its problems

Most students rst encounter the quantum mechanical treatnent of scattering with the
simple example of a 1-D patrticle incident on a potential step

0 for x<O .

V(X)) = Vo (x)= Vp for x>0 °

(A1)
We will base most of our discussion on this example, thoughs avill be obvious, most of
what we have to say applies to scattering problems in general

The familiar calculation of R and T probabilities for the potential step proceeds as follows.
One nds solutions to the time-independent Schredinger agation

2
om B+ V) )=E (x) (A.2)

valid on the two sides of the origin:

_ Ae®™ +Be ™ for x< 0
KX)= Cdx 4+ De i for x> 0 (A-3)

where
2mVy

~2

2= K2 =k? p= (A.4)

Then, citing as an initial condition that particles be incicent from (let us say) the left, one
argues on physical grounds that the coe cientD (describing particle ux incident from the

right) should vanish, leaving

ikx 4 ikx <
RS AN s
where one interprets theA term as representing incident ux,B as the re ected ux, and C
as the transmitted ux.

A number of conceptual problems associated with the planeawe analysis are already
manifest. Several features of the argument (such as writitge most general solution of the
Schredinger equation in terms of complex exponentials raér than sines and cosines, and the
elimination of the D term) are based on a certain intuitive physical picture of tk scattering
process: particles propagate in from the left, re ect or trasmit at x = 0, and subsequently
propagate out to the left or right. The fact that the particles propagatesuggests the complex
exponentials, and the fact that particles can never be progating to the left in the x > 0
region warrants settingD = 0.

But rigorously speaking, Equation A.5 and the intuitive physical picture we partially
based it on, are in conict. For example, according to Equatin A.5, there is never a time
when the particle was de nitely incident from the left (and hkence no real argument that
it shouldn't be in the x > 0 region moving to the left). Another way to say this is that
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the physically realisticinitial condition we had in mind (that once upon a time there was a
particle approaching the step with some de nite width, pogion, and speed) is inconsistent
with the wave function we actually write down: the latter repesents a particle which is
in nitely spread out through all of space and which as been fever, timelessly re ecting and

transmitting from the barrier. The standard argument thus nuddles together two distinct

steps { setting up the initial conditions and nding a solution. This may seem e cient, since

it is di cult to write down a general solution without alread y having in mind the idea of an

initially-incident propagating plane-wave. But what expets perceive as e cient, students

nd confusing.

Experts are probably also used to thinking of the timelessiesady-state wave function as
some kind of limit for an in nitely-wide incident packet. But how exactly this limit works
is unclear, even to most experts. We will show in the subsequesection that it is actually
quite straightforward to understand { so simple in fact thatwe advocate introducing it to
students from the very beginning and thus avoiding complele the kinds of issues being
raised here.

Let us continue now sketching and critiquing the standard pine-wave analysis of this
problem.

Equation (A.5) actually solves Equation (A.2) atx =0 only if and ©°are continuous
at there. Imposing these conditions gives the following faliar expressions relating the
amplitudes of the incident, re ected, and scattered waves:

B k

A k+ (A.6)
and c oK

K = k n (A?)

Note that even writing down equations A.6 and A.7 requires mognizing that the value of A
is an arbitrary initial condition which then sets the valuesof B and C. In working through
this derivation with students, we have observed that whiletadents have no trouble verifying
that these equations are true, they are often ba ed by why we ltoose to write them down
in the rst place. Writing these particular equations also aticipates an ultimate goal of
deriving the re ection and transmission probabilitiesR and T, a goal which is often not
obvious a priori to students.

Further, even when it is clari ed that the goal is to deriveR and T, it is not entirely clear
how to proceed, unless one is already familiar with the deation. According to the standard
probability interpretation of the wave function, the re ection and transmission probabilities
should be given by the area under the re ected and transmitte part of j j2, respectively,
divided by the area under the incident part ofj j?. Since all these areas are in nite, one
can't calculate the re ection and transmission probabilites as one would naively expect.
However, it is quite tempting (and quite wrong) to assume thiathe in nite widths simply
cancel and that the re ection and transmission coe cients ae given by:

R = jBj*5Aj? (A.8)
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and

T = |Cj*5Aj? (A.9)
We have observed that this is a common mistake for students taake, but most textbooks
do not address it. The actualR and T values are proportional not to the ratio of probability
densities (associated with the appropriate outgoing and @ndent part of the wave), but of
the probability densities times the group velocities, or agvalently, times the wave numbers:

_ v(K)iBj? _ KkiBj? _jBjZ _ k  ?

T VKA~ KAZ A2 k+ (A.10)
and ()iCi2 ici2 ax
_ Vg )IC)E _JC)° _
TV (KIAZ | KA | (k+ )2 (A.11)
where . k
Yl = g = (A.12)
Here! (k) = E(k)=~ = ~k?=2m. One can verify thatR + T = 1.

Many textbooks simply write down Equations A.10-A.11 withat explanation, or worse,
avoid them altogether by skipping the step potential and goig straight to tunneling through
a square barrier, using Equations A.8-A.9 without mentiomg that they happen to be cor-
rect only for the special case where the wave numbers are elqoia both sides. At least one
textbook even writes down Equation A.8 as the obvious exprasn for R, and then \derives"
the correct expression for T by stating that it follows from he convention thatR + T = 1!
This is bad because it deliberately hides an important issubat should be confronted explic-
itly. But, one might think, at least it's mathematically val id. But even that is questionable:
with the plane-wave scattering state (which is timelesshsimultaneously incident, re ected,
and transmitted) why should it be true that R + T = 1? At any particular moment (no
matter how far in the future) it seems quite possible that theparticle is neither re ected
nor transmitted but it rather still incident. And so practic ally every mathematical step is
clouded by physical assumptions which are at odds with the @@l mathematics.

The vast majority of QM textbooks justify Equations A.10-A11l by introducing the
probability current
- @ @
2m @x @x
which describes the ow of quantum mechanical probabilityas proved by the fact that the
time-dependent Schredinger equation entails the continty equation

@, 0 (A.14)
@t @x
with = j j? the standard expression for probability density in the thexy.
For a plane wave with = Ae**, Equation A.13 gives the probability current:

j = (A.13)

k.
j= HJAJZ (A.15)
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which equals the probability densityjAj? times the group velocity de ned previously.

These textbooks state, usually with little explanation, trat the re ection and transmission
coe cients are given by the ratios of the individual probablity currents for the re ected and
transmitted terms to the incident current:

JiRr]

R = T (A.16)
|
and :
T = ‘J—T (A.17)
|
wherej,  kjAj? is the probability current for the incident wave function |, = Ae**, and

analogouslyj g kiBj?andjr  jCj2.

Equations A.16-A.17 and the resulting Equations A.10-A.1¢an be understood somewhat
intuitively by arguing that if the incoming and transmitted waves are traveling at di erent
speeds, then it makes sense that the amount transmitted sHdube proportional to the
ratio of the speeds. However, it is di cult to make a rigorous rather than hand-waving,
argument for why, a priori, Equations A.16-A.17 are the cogct expressions for the re ection
and transmission coe cients.

It is also di cult to intuitively relate the probability cur rent approach to the interpreta-
tion of the probability as the area under the curve. Furtherrore, it is not intuitively clear
why the relevant speed to use is the group velocitg!=dk, rather than the phase velocity,
I=k . In fact, if students investigate an animation of plane wavenotion by writing a com-
puter program or using a simulation?, only the phase velocity will be apparent to the eye.
Furthermore, while the the group velocity of the transmittel wave is smaller than that of
the incident wave, the phase velocity will actually be large so it is quite easy to develop
incorrect intuitions based on the behavior of plane wavest is quite di cult to get an intu-
itive sense of the group velocity of a plane wave at all, unkesne thinks of it as an in nitely
wide wave packet, in which case one can imagine the group \@tp as the speed with which
this entire packet moves through space. In fact, thinking ofery large wave packets seems
to be the only way to gain an intuitive sense of plane waves atl § as we will argue in more
detail subsequently.

Thus, although the ratio of probability currents does give he correct answer it is far from
clear to students (and no doubt many experts) why this shoulthe. Moreover, probability
current is a sophisticated concept, which is typically intoduced solely for the purpose of
deriving the formulas forR and T. Introducing such a concept in the middle of a derivation
places extra cognitive load on students, increasing the ékhood that they will give up on
understanding and just accept the results \on faith,” as maig formulas to be memorized
and used without comprehension.

Further, the same fact that makes this detour into probabily currents necessary { that
we are dealing with unphysical plane-wave states { can cauigther conceptual di culties,

1See, for example, the PhET simulation Quantum Tunneling and Wave Packets
http://phet.colorado.edu/new/simulations/sims.php? s im=quantumtunneling
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as shown by physics education research on this topid.[ Plane waves are mathematically
simple. But they completely fail to capture the inherently ime-dependent processes that
they are being used to describe. For example, we say that a pele approaches a barrier
from the left, and then part of it is transmitted and part of it is re ected. The language
we use to talk about scattering processes matches the phgdiprocesses themselves (e.g.,
in a real experiment, particles are shot toward a target at aestain time and emerge in
some direction or other at some later time) { but there is a dgedisconnect between, on
the one hand, the language and the physical processes and tlom other hand, the quantum
mechanical description in terms of plane-waves.

In summary, the analysis of 1-D scattering in terms of planeave states, although math-
ematically simple, requires enough overhead and raises egb conceptual di culties that
the central physical lessons are signi cantly obscured. Wdn't it be nice if there were some
way of treating this topic that (a) didn't require the overhead of probability current and (b)
forced students to think, from the very beginning, that we ag really dealing with physical,
normalizablewave packetso which the plane waves are merely a convenieapproximation?

Such an approach will be outlined in the following section.nllater sections we present
also techniques for calculating and approximating and T probabilities when the incident
particle is represented by a gaussian wave packet. Thesehmeigues are probably too ad-
vanced for students in an introductory course. But our hopeand reason for including them
here) is that they may help teachers of quantum physics to réae, fully and explicitly, that
the plane wave formulas { e.g., Equations (A.10) and (A.11) fre approximations which
are \good" (only) in a certain, intuitively sensible range & physical situations (having to do
with the width of the incident packet relative to other length scales in the problem). This
perspective is clarifying, and may help repair and prevenhe sorts of di culties mentioned
above.

A.3 Scattering probabilities and packet widths

Figure A.1: A Caption Needs to Go Here...

Consider a wave packet approaching the \scattering targetat x = 0 for the potential
de ned in Equation (A.1). Figure A.1 is a diagram of this setyp. Assume the packet has
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an almost-exactly constant amplitude A) and wavelength (o = 2 =k ) in the region (of
width w;) where the amplitude is non-vanishing, as shown in the Figar Thus, where the
amplitude is non-zero, the packet will be well-approximate by a plane wave:

= Aekox: (A.18)

We may assume this incident packet is normalized, so tha jAj2 1.

What happens as the packet approaches and then interacts withe potential step at
x = 0? To begin with, the packet retains its overall shape as it @proaches the scattering
center (that is, we assume that the inevitable spreading ohe wave packet is negligible on
the relevant timescales). It simply moves at the group velay corresponding to the central

wave number for the regiorx < 0O:
<_ "~k
v = WO: (A.19)

We then divide the process into the following three stages:

The leading edge of the packet arrives at =0
The constant-amplitude \middle" of the packet is arriving & x =0
The trailing edge of the packet arrives ak = 0
Suppose the leading edge arrives at tinte. Then the trailing edge will arrive att, satisfying
tz  ti= W=V = wym=-ko: (A.20)

And for intermediate times,t; <t<t ,, we will have { in some (initially small, then bigger,
then small again) region surrounding = 0 { essentially the situation described in Equation
(A.5), namely: a superposition of rightward- and leftwarddirected plane waves (just to the
left of x = 0) and a rightward-directed plane wave with a di erent wave number (to the
right). And the same relations derived in the previous sean for the relative amplitudes of
these three pieces will still apply.

While crashing into the scattering center, the incident pdcet \spools out” waves { with
amplitudes B and C given in Equations (A.6) and (A.7) { which propagate back to he left
and onward to the right, respectively. These scattered wasewill also be wave packets, with
the leading edges of the re ected and transmitted packetsrimed at time t; and the trailing
edges of the re ected and transmitted packets formed at time.

This gives a very simple and illuminating way toderive Equations (A.10) and (A.11).
Consider rst the re ected packet. The probability of re ection, R, is by de nition just its
total integrated probability density { which here will be its intensity jBj? times its width
wg. But the width of the re ected packet will be the same as the wdth of the incident
packet: because these two packets both propagate in the sanegion, they have the same
group velocity, so the leading edge of the re ected packet lWbe a distancew; to the left of
x = 0 when the trailing edge of the re ected packet is formed. Ths, we have
jBj?

R = WgjBj? = w,jBj? A (A.21)
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where we have used the normalization condition for the inaét packetw, jAj? 1.

Similarly, the total probability associated with the transmitted wave will be its intensity
jCj? times its width wy. But wy will be smaller than w; because the group velocity on the
right is slower than on the left. In particular: the leading elge of the transmitted packet
is created attq; the trailing edge is created att,; and between these two times the leading
edge will be moving to the right at speed

> 0
= — A.22
v = — (A22)
where 3 = k3 p? is the (central) wave number associated with the transmitte packet.
Thus, the width of the transmitted packet { the distance between its leading and trailing
edges { is

wr =V ( ty) = k—Zw (A.23)

and so the transmission probability is
0iCj?

— r~i2
T ar

(A.24)

in agreement with Equation (A.11).

To summarize, one can derive the correct general expressidior R and T merely by
considering the kinematics of wave packets, without ever mg&oning probability current. In
particular, the perhaps-puzzling factor of o=k, in the expression fofT has an intuitive and
physically clear origin in the di ering widths of the incident and transmitted packets, which
in turn originates from the di ering group velocities on thetwo sides.

This route to the important formulas is actually simpler than the one traditionally taken
in introductory quantum texts: there is a clearly de ned initial condition and a de nite
process occuring in time; probability only enters in the stadard way (as an integral of
the probability density j j2); and the two quantities needed to de ne the probabilities the
packet widths and amplitudes) are arrived at separately andleanly. This approach thus
has several virtues in addition to simplicity. First, with proper guidance, focusing on wave
packets and a dynamical process in which something (hnamelyastering) actually happens
in time can help students think about the physical procesphysically and/or to connect
the mathematics up with real examples. Second, thinking inetms of wave packets can
help students recognize that the formulas developed abower fre ection and transmission
probabilities (and this point applies equally well to threedimensional scattering situations)
are approximations and to understand when those approximations do and do not alyp

In particular, the argument presented here suggests that éhprecise mathematical ex-
pressions forR and T above will apply only in the limit of very wide incident packes. This
has several aspects. First, we are justi ed in neglecting ¢hdynamical spreading of the
wave packet (and hence, e.g., treating the re ected packesdaving the same width as the
incident packet) only if the speed of spreading is less tharé group velocity, that is, if

k <<k where k 1= x 1=w is the width of the incident packet in k-space. This
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implies that w, >> ¢, in other words, that the width of the wave packet is much largr
than the characteristic wavelength in the region where themaplitude is non-vanishing.
Further, the plane-wave style derivation of the amplitudesassumes that, for some time
interval (roughly, t; <t<t ,), the wave function's structure in some (variable) spatiategion
around x = 0 is indeed given by Equation A.5. But these conditions willsimply fail to
apply if the actual wave function is (in the appropriate spae and time regions) insu ciently
plane-wave-like, e.g., if the amplitude of the wave variesppreciably over a length scale
o =2 =k . Thus (assuming a smooth spatial envelope for the packet)déhformulas will be
valid in the limit w, o, which is mathematically equivalent to the limit noted prevously.

A.4 Gaussian wave packet scattering from a step po-
tential

It is possible to work out the exact R and T probabilities for a Gaussian wave packet
incident on the potential step of Equation (A.1). Most of thederivation is worked out in
several texts [, 11], though invariably these texts fail to write down the exactexpressions for
R and T and instead make last-minute approximations which resulnithe plane wave results
developed previously. But it is worth pushing through the claulation to the end, if only to
illustrate that there is an exact result to which the plane wave formulas are approxaions.
Having the exact result in hand also allows one to analyticlgl pick o explicit expressions
for rst non-vanishing corrections to the plane wave result That the corrections are small
in precisely the limits discussed at the end of the previoug&tion, is a nice con rmation of
that discussion.

We begin with an incident Gaussian wave packet, with centrallave numberk, and width

and centered, att =0, at x = a:

(X; 0) - ( 2) l:4eiko(x+ a)e (x+a)2=2 2 (A25)

We then follow Shankar's text and proceed in four steps.

Step 1 is to nd appropriately normalized energy eigenfunains for the step potential.
These may be parametrized bk and are (up to normalization) just the plane wave states
given previously:

B o ( x)+ % ex (x) (A.26)

1 ikx
= +
k(X) p—2 e

where, as before,? = k? 2mVy=-? and B=A and C=A are to be iﬂtﬂpreted as thdunctions
of k given by Equations (A.6) and (A.7). The overall factor of £ 2 out front is chosen so
that Z

w(¥) k()dx = (k  KI: (A.27)

We are here assuming that only eigenstates with energy eigaluesE = ~?k2=2m >V will
be present in the Fourier decomposition of the incident paek (and hence we fail to make
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explicit special provision for those  for which is imaginary). Note also that there are two
linearly independent states for eacle only one of which is included here. The orthogonal
states will have incoming, rather than outgoing, plane wasefor x > 0; such states will never
enter given our initial conditions.
Step 2 is to write the incident packet as a linear combinationf the s:
Z

(30 = «x) (k;0)dk (A.28)

where (assuming << a so the amplitude of the incident packet vanishes fax > 0)

1=4

2 .
(k;0)= — e (k ko)® *2gka (A.29)

turns out to be the ordinary Fourier Transform of (x;0).
Step 3 is to write (x;t) by appending the time-dependent phase factor to each of the
energy eigenstate components of(x; 0):
Z

(x;t) k(x) (ki t) dk

Z

«(X) (k;0) e EWE gk

1242
2 k2t (K k)2 2

— om 2 ika ikx % ikx E i X .
= 7 e e e e'(x)+Ae (x)+Ae'(x)dk.

We can then nally { Step 4 { analyze the three terms for physial content. The rst
term, aside from the ( x), describes the incident Gaussian packet propagating to ¢tright.
For su ciently large times (when the incident packet would have support exclusively in the
regionx > 0) the ( x) Kills this term { i.e., the incident packet eventually vanishes.

The second and third terms describe the re ected and transmed packets, respectively.
If the factors (B=A) and (C=A) were constants, we would have Gaussian integrals which we
could evaluate explicitly to get exact expressions for theerected and transmitted packets
{ which would themselves, in turn, be Gaussian wave packetshweh could be (squared and)
integrated to get exact expressions for thR and T probabilities. However, these factors are
functions ofk. It is not unreasonable to treat them as roughly constant ovehe (remember,
quite narrow) range ofk where (k;0) has support. This is the approach taken by Shankar
(and, at least by implication, several other texts) and the esult is precisely the plane wave
expressions foR and T we developed earlier.

But another approach (which, surprisingly, we have not fouth in the literature) is also
appealing. Consider the second and third terms of EquatiorA(30) { which represent (for
late times when these terms are non-vanishing) the re ecteahd transmitted packets. These
can be massaged to have the overall form (again assuminhgu ciently large that the

factors can be dropped) 7
jkx

r=T (X;1) = p? r=T (K; t) dk: (A.30)
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Putting the two terms Ep this form requires a change of variales { from k to k for the

R term, and fromk to k2 p? for the T term. The resulting expressions for thé-space
distributions of the re ected and transmitted packets are:

2 14

i~k2 +kg)? 2 k +
Ry —  eime e ke — (A.31)
and
3 p !
2 1= 2 oz w22 . 2 k2+ p? k
T(k,t) _ - e (k2m p )te C k p2 ko) elka A P n (A32)

Tk ke

But we can just as well integrate the momentum-space wave fations (to nd the total
probability associated with a given packet) as the positiospace wave functions. Thus,

Z
R = | r(kb)j* dk
1=2Z 2
— _2 e (k+ko)2 2 llz+ dk
2 127 ;2 B 2
= — e (k ko) A dk (A.33)

where in the last step we have done another change of variableom k to k. This result
can be summarized as follows: Z

R= P(k)Rdk (A.34)

whereP (k) = j (k;0)j? is the probability for a given k associated with the incident packet,
and Ry is simply the re ection probability for a particular value of k as expressed in Equation
A.10.
The analogous result for thel term emerges after some more convoluted algebra:
Z

T i (k)% dk

|
— _ " 2
_ 2 22 PiEre oy 2 2" k?+ p? k?
= — e p= Ko P dk
k2+ p2+ k k2+p?

122 2
C
= - (k k0)2 2 _ _
z e A K dk
P (k) Txdk: (A.35)

where in the next-to-last step we have made a change of variab (back!) fromk to P k2 + p2.
These expressions are exact (subject to the assumptions edtearlier). Note that, if we
treat (B=A)? and (C=A)?( =k ) as constants that do not depend ok (i.e., if we approximate
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these functions by their values ak = kg, which is a good approximation so long as as the
functions don't vary appreciably in a region of width & around kg, i.e., if the width  of
the incident packet is very big) we are left with plain Gaussin integrals that can be done
to get back the plane-wave-approximation results we starewith: R = (B=A)? evaluated
at k = ko, etc.

Unfortunately, the actual integrals are too messy to do exdg. But we can Taylor expand
the (B=A)? and (C=A)?( =k ) factors aroundk = kg to get a series of integrals that can be
done, resulting in a power-series expansion (in inverse paw of the packet widthw) of the
exactR and T. approximations ofR and T.

The rst two non-vanishing terms for R and T are as follows:

ko o2, 2.8 ko o 21
R = . + 2 i A.36
ko+ o 0 5 kot o 2 ( )
and )
4k0 0 2k0 8 ko 0 1
=__00 0, —+ A.37
(ko+ )2 5 6 kot o 2 (A37)

We propose christening as \the plane wave approximation” # large- limit of these exact
results.

A.5 Discussion

Things to discuss here:

Respond to the possible objection that \of course” the real R probabilities are

P (k)Rkdk, etc. This objection presupposes that it is meaningful to dee R and T
for plane wave states, which it is really the fundamental pat of our paper to deny.
So it's a good opportunity to clarify.

Discuss the generalization of thiR = RP(k)dek type result. What if P(k) has
support for k's where funny things happen, e.g., the assoteal goes imaginary?
Does it apply to square barrier tunneling? Or is there someihg special about this
potential step example that makes this work out so nicely? Ahdoes it only apply for
Gaussian packets, or is it really really general?

Discuss \real life" JILA type experiments where the plane-ave approximation is bad,
and lobby for talking about these with students in order to hp motivate the wave-
packet approach.

Figure out some better way of integrating the two main secties here, so that they
both become parts of one coherent argument.
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