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Abstract

In this paper, we will derive the reection and transmissioncoe�cients for a Gaussian wave
packet to travel through an arbitrary potential barrier. These equations should be thought of
as the fundamental equations governing reection and transmission. We will show that our
equations reduce in the wide wave packets limit to the plane The reection and transmission
coe�cients derived for plane waves should be in tern thoughtof as approximate value valid
for wide wave packets. We will extend this argument to arbitrary wave packets and show how
to generalize the argument. We will then take as a special case the step potential and perform
a Taylor expansion of the reection and transmission coe�cients to derive approximate (but
more accurate then plane wave) expressions for the coe�cients. We will then examine the
rectangular barrier potential and show that our expressionfor the reection and transmission
coe�cients are qualitatively di�erent from those from the p lane wave approximation. This
provides a good example of why our equations for the refection and transmission coe�cients
should be thought of as fundamental.
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Chapter 1

A Derivation of the Reection and
Transmission Coe�cients

1.1 De�nitions

We can characterize an arbitrary potential that we would like a wave packet to scatter o� as

V(x) =

8
><

>:

0 x < 0

Vm (x) 0 � x � a

V0 x > a:

(1.1)

Here, we assume that the potential is zero untilx = 0 and that it ends at some constant
value V0 asx = a. Other than that, it can do anything betweenx = 0 and x = a. Figure 1.1
shows a sketch of this potential for some particularVm (x).

We are interested in �nding the energy eigenstates for this potential. We will do this by
�nding general solutions to the time independent Schr•odinger equation. For this potential,
wavefunctions have the form

 k =

8
><

>:

Aeikx + Be� ikx x < 0

 m (x) 0 � x � a

Cei�x x > 0:

(1.2)

V(x)

a0 x

V0
Figure 1.1: Here is a plot of the po-
tential de�ned in equation 1.1. The
potential is 0 for values less than 0
and V0 for values greater thana. The
potential is some arbitrary unspeci-
�ed function for values in between.
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with
� 2 = k2 �

2mV0

~2
= k2 � p2: (1.3)

This is only a formal solution because we do not know what m (x) is. All we can say is that
it is some arbitrary solution to the Schr•odinger equation for the arbitrary potential Vm (x)
that ensures that both  and  0 are continuous. We can do quite a lot without actually
specifying exactly what  m (x) is. We write the probability current for the incoming and
outgoing waves as

j = �
i~
2m

�
 � @ 

@x
�  

@ �

@x

�
: (1.4)

For a plane wave with = Aeikx , the probability current is

j =
~k
m

jAj2: (1.5)

Because the probability current must be conserved, the probability current for the incoming
wave must equal the probability current for the reected andtransmitted waves:

~k
m

jAj2 =
~k
m

jB j2 +
~�
m

jCj2: (1.6)

This simpli�es to �
�
�
�
B
A

�
�
�
�

2

+
�
k

�
�
�
�
C
A

�
�
�
�

2

= 1: (1.7)

1.2 Normalization of the Energy Eigenstates

Because k involves in�nite plane waves, the particular normalization that we pick is in some
sense arbitrary. Will pick following normalization1

 k(x) =
1

p
2�

��
eikx +

B
A

e� ikx

�
� (� x) +  k;m (x)� (x)� (a � x) +

C
A

ei�x � (x � a)
�

: (1.8)

This convention is picked so that
Z

 �
k0 kdx = � (k � k0) (1.9)

1 Here, we have de�ned

� (x) =

(
0 x < 0
1 x > 0:

It follows that

� (x)� (a � x) =

8
><

>:

0 x < 0

1 0 < x < a

0 x > a:

18



We can prove this as follows:
Z

 �
k0(x) k (x)dx =

1
2�

Z ��
e� ik 0x +

B 0�

A0�
e+ ik 0x

�
� (� x) +  �

k0;m (x)� (x)� (a � x) +
C0�

A0�
e� i� 0x � (x � a)

�

�
��

eikx +
B
A

e� ikx

�
� (� x) +  k;m (x)� (x)� (a � x) +

C
A

ei�x � (x � a)
�

dx: (1.10)

The primes onA0, B 0, C0, and � 0 are necessary because they are functions ofk (really k0 in
this case). Since the� functions are orthogonal and square to themselves, we have

Z
 �

k0(x) k (x)dx =
1

2�

Z 0

�1
ei (k� k0)xdx +

1
2�

Z 0

�1

B
A

e� i (k+ k0)x dx

+
1

2�

Z 0

�1

B 0�

A0�
ei (k+ k0)xdx +

1
2�

Z 0

�1

B 0�B
A0�A

ei (k0� k)xdx

+
1

2�

Z a

0
 �

k0;m  km dx +
1

2�

Z 1

a

C0�C
A0�A

ei (� � � 0)xdx: (1.11)

The �rst term is equal to � (k � k0)=2.2 The second and third term are each proportional to
� (k + k0). Since the eigenfunctions we are dealing with are only for incoming waves, all our
waves have positive wave vector. It must be thatk + k0 is positive so� (k + k0) = 0. The
second and third term integrate to 0. The fourth term is equalto (B 0�B=A0�A) � � (k � k0)=2.
The sixth term is a more complicated. It is equal to

1
2�

Z 1

a

C0�C
A0�A

ei (� � � 0)x dx = e� (� � � 0)a 1
2�

Z 1

0

C0�C
A0�A

ei (� � � 0)xdx (1.13)

= e� (� � � 0)a C0�C
A0�A

� (� � � 0)
2

(1.14)

=
C0�C
A0�A

� (� � � 0)
2

: (1.15)

In the second step, we have changed variables fromx to x + a. In the last step, the phase
was ignored since is is unity whenever the other terms have support. This simpli�es to 3

� 0

k
C0�C
A0�A

� (� � � 0) (1.22)

2 To prove this, we use the identity

� (k � k0) =
1

2�

Z 1

�1
ei (k � k 0)x dx: (1.12)

3 To prove this, we need to write � (� � � 0) in terms of � (k � k0). We can do so using the identity

� (g(x)) =
X

i

� (x � x i )
dg(x i )=dx

: (1.16)

19



Plugging all the terms in, we get

Z
 �

k0(x) k (x)dx =
� (k � k0)

2
+

B 0�B
A0�A

�
� (k � k0)

2
+

Z a

0
 �

k0;m  k;m dx +
� 0

k0

C0�C
A0�A

� (k � k0)
2

: (1.23)

Since these delta functions are non-zero only whenk = k0, we can without loss of generality
replace the primed values in the coe�cients with their unprimed values. We get

Z
 �

k0(x) k (x)dx =
� (k � k0)

2
+

jB j2

jAj2
�

� (k � k0)
2

+
Z a

0
 �

k0;m  k;m dx +
�
k

jCj2

jAj2
� (k � k0)

2
(1.24)

= � (k � k0) +
Z a

0
 �

k0;m  k;m dx (1.25)

Our wave functions must be orthogonal in order for them to be an eigenstate of the Hamil-
tonian. For this to be true, it must be the case that

Z a

0
 �

k0;m  k;m dx

�
�
�
�
k6= k0

= 0: (1.26)

Here x i are the real roots ofg(x). To use this identity, we can think of � � � 0 asg(x). The slightly confusing
thing is that we have been thinking of both � and � 0 as variables while the identity works with only one
variable. We will `think' of � as the variable and� 0 as a constant. When we do this, we note that the real
roots of our function are k = k0 and k = � k0.

� (� � � 0) = � (
p

k2 � 2mV0=~2 �
p

k02 � 2mV0=~2) (1.17)

= � (g(k)) (1.18)

=
� (k � k0)
dg(k0)=dk

: +
� (k + k0)

dg(� k0)=dk
: (1.19)

Since we are only dealing with incident plan waves wherek is positive, the second part of this equation is
equal to 0. We can calculate the denominator of the �rst term as

dg(k)
dk

=
1
2

1
p

k2 � 2mV0=~2
� 2k (1.20)

= k=� (1.21)

It follows that � (� � � 0) = ( � 0=k0) � � (k � k0).
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V(x)

a0 x

Figure 1.2: This is a plot of the
real part of  (x; 0) de�ned in
equation 1.32. The plot also
shows V(x) on top of it. This
plot is possibly misleading be-
causeV(x) and  (x; 0) have dif-
ferent units and are therefore not
comparable. They are simply
plotted on top of each other. The
scale of one can not be compared
to the scale of another.

Furthermore, the value of this integral whenk = k0 must be �nite. Thus, when k = k0, we
have4 Z a

0
 �

k0;m  k;m dx

�
�
�
�
k= k0

= 1 + [�nite value] = 1 (1.30)

We see that Z a

0
 �

k0;m  k;m dx = � (k � k0): (1.31)

1.3 A Gaussian Wave Packet

We are interested in calculating the reection and transmission coe�cients of a wave packet
through an arbitrary potential. Because of its simplicity, we will �rst work with a wave
packet that is Gaussian. We write our initial wavefunction as

 (x; 0) = ( �� 2)� 1=4eik 0(x+ a)e� (x+ a)2=2� 2
: (1.32)

Our wave packet is centered at� a in position space andk0 in k space. Figure 1.2 shows a
plot of psi(x; 0) and a plot of V(x). We are interested in calculating limt !1  (x; t ). The

4We can make this argument a little bit more rigours by integrating this function in k space over an
in�nitesimal range from k0 � � to k0+ �

Z k 0+ �

k 0� �

Z 1

�1
 �

k 0 k dxdk =
Z k 0+ �

k 0� �

�
� (k � k0) +

Z a

0
 �

k 0;m  k;m dx
�

dk (1.27)

= 1 +
Z a

0

Z k 0+ �

k 0� �
 �

k 0;m  k;m dkdx (1.28)

The second term integrates to 0 for any wave function that is �nite at all points. This will always hold so
long as the potential doesn't do anything funny like go o� to i n�nity. By de�nition then, we see that

Z
 �

k 0(x) k (x)dx = � (k � k0): (1.29)
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fraction of the wave packet to the left ofx = 0 is the reection probability and the fraction
of the wave packet to the right ofx = 0 is the transmission probability. To calculate this, we
will write out our wave function as a linear combination of the energy eigenfunction. Then,
we will advance in time (by multiplying each eigenfunction by an energy phase). We will
be able to take the larget limit to �nd the percent of the wave to the left and to the right .

1.4  as a Superposition of Energy Eigenstates

We are interested in writing  (x; 0) as a superposition of plane wave states

 (x; 0) =
Z

� (k) k(x)dk: (1.33)

We have to solve for� (k):

(�� 2)� 1=4eik 0(x+ a)e� (x+ a)2 =2� 2
=

Z
 k(x)� (k)dk (1.34)

We can multiply each side by �
k0(x) and integrate over allx:

Z
 �

k0(x)( �� 2)� 1=4eik 0 (x+ a)e� (x+ a)2=2� 2
dx =

Z Z
 �

k0(x) k(x)� (k)dxdk (1.35)

= � (k0) (1.36)

Here, we have used the orthogonality of the k , Since there are no corresponding unprimed
variables, we can get rid of the primes in this equation

� (k) = ( �� 2)� 1=4
Z 1

�1

1
p

2�

��
eikx +

B
A

e� ikx

�
� (� x) +  k;m (x)� (x)� (a � x)+

C
A

ei�x � (x � a)
�

� eik 0 (x+ a)e� (x+ a)2=2� 2
dx: (1.37)

We can deal with the four terms separately. We assume that thewave packet comes in from
far to the left so w � a. This means that the term exp(� (x + a)2) has vanishing support
for x > 0. The �rst term in the equation is

(�� 2)� 1=4

p
2�

Z 1

�1
e� ikx eik 0(x+ a)e� (x+ a)2 =2� 2

� (� x)dx: (1.38)

Since the Gaussian has vanishing support forx > 0, we can approximate this integral by
removing the � (� x) term We have

(�� 2)� 1=4

p
2�

Z 1

�1
e� ikx eik 0 (x+ a)e� (x+ a)2=2� 2

dx: (1.39)
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We make the change of variablesx0 = x + a

(�� 2)� 1=4

p
2�

Z 1

�1
ei (k0x0� kx 0+ ka)e� x02=2� 2

dx0 = eika (�� 2)� 1=4

p
2�

Z 1

�1
ei (k0 � k)x0

e� x02=2� 2
dx0: (1.40)

Solving this integral, we �nd that our �rst term is 5

�
� 2

�

� 1=4

e� (k� k0 )2 � 2=2eika (1.41)

We can now deal with the second term. We can get rid of the� (� x) term since it is
equal to 1 when the rest of the integrand has support. What is left is the ordinary Fourier
transform integral which gives the� k component of the original . But we assume that our
incoming wave packet has no left moving wave components and thus this integral must be
0.6

The third and fourth terms both integrate to 0. This is because the exponential term in
the integrals have vanishing support forx > 0 whereas the� (x)� (a � x) and � (x) terms have
vanishing support forx < 0. The function has no support for all values. The integral must
be 0.

From this, we see that

� (k) =
�

� 2

�

� 1=4

e� (k� k0)2 � 2=2eika : (1.42)

1.5 The Time Evolution of  

We can write the wave function for our Gaussian wave packet atany arbitrary time by
multiplying all the eigenstates in equation 1.33 by the phase associated with their time
evolution:

 (x; t ) =
Z

� (k) k(x)e� iE (k)t=~ (1.43)

=
Z �

� 2

�

� 1=4

e� (k� k0)2 � 2=2eika �
1

p
2�

��
eikx +

B
A

e� ikx

�
� (� x)+

 k;m (x)� (x)� (a � x) +
C
A

ei�x � (x � a)
�

e� i ~k2 t=2m dk:

(1.44)

5 Here we are using the identity
Z 1

�1
e� ax 2 + bx dx = eb2 =4a

r
�
a

:

6This is actually an approximation. The wave packet's distribution in k-space is Gaussian so there is
some amplitude for the packet to have anyk value{even negative values! The amplitude for the packet to
have a negativek values and therefore the Fourier component for the packet tobe moving to the left will
be negligible so long as the width of the wave packet ink space (roughly 1=� ) is small in comparison to the
central value of k. This is a reasonable assumption of a well de�ned wave packetincident on the barrier.
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The �rst term in this equation corresponds to the incoming wave. It dies out for large t.
The second term is the reected wave.

 R (x; t ) =
�

� 2

4� 3

� 1=4 Z
e� i ~k2 t=2m e� (k� k0)2 � 2 =2eika

�
B
A

�
e� ikx � (� x)dk: (1.45)

The third term is the part of the wave in the potential V (x). It also dies out for larget. The
fourth term is the transmitted wave.

 T (x; t ) =
�

� 2

4� 3

� 1=4 Z
e� i ~k2 t=2m e� (k� k0)2 � 2 =2eika

�
C
A

�
ei�x � (x � a)dk (1.46)

1.6 The R Term

In order to calculate the reection coe�cient, we examine the reected part of the wave
packet  R (x; t ). For large t, this wave will exist only for x < 0. We can remove the� (� x)
term. If we make the substitution x = � x, we can now write R (x; t ) as

 R (x; t ) =
Z

eikx

p
2�

� R (k)dk: (1.47)

We have7

 R (x; t ) = �
�

� 2

4� 3

� 1=4 Z
e� i ~k2 t=2m e� (k� k0)2 � 2=2eika

�
B
A

�
eikx dk: (1.48)

Therefore,

� R(k) = �
�

� 2

�

� 1=4

e� i ~k2 t=2m e� (k� k0 )2 � 2=2eika

�
B
A

�
: (1.49)

We write the reection coe�cient as

R = lim
t !1

Z
j� R (k)j2 dk: (1.50)

R =
�

� 2

�

� 1=2 Z
e� (k� k0)2 � 2

�
�
�
�
B
A

�
�
�
�

2

dk: (1.51)

1.7 The T Term

In order to calculate the transmission coe�cient, we examine the transmitted part of the
wave packet T (x; t ). For large t, the transmitted packet is entirely to the right of x = a

7Remember that when we make the change of variables, the limits of integration change. The limits are
changed back at the cost a minus sign.
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and we can remove the� (x � a) term. When we make the change of variables fromk top
k2 + p2, we can write  T (x; t ) as

 T (x; t ) =
Z

eikx

p
2�

� T (k)dk (1.52)

where

 T (x; t ) =
�

� 2

4� 3

� 1=4 Z
e� i ~(k2+ p2)t=2m e� (

p
k2+ p2 � k0)2 � 2 =2eika

�
C
A

�
eikx k

p
k2 + p2

dk: (1.53)

Therefore,

� T (k) =
�

� 2

�

� 1=4

e� i ~(k2+ p2)t=2m e� (
p

k2+ p2 � k0)2 � 2 =2eika

�
C
A

�
k

p
k2 + p2

: (1.54)

We can then write the total probability of transmission as

T = lim
t !1

Z
j� T (k)j2 dk: (1.55)

For our wave packet, we have

T =
�

� 2

�

� 1=2 Z
e� (

p
k2+ p2 � k0)2 � 2

�
�
�
�
C
A

�
�
�
�

2 k2

k2 + p2
dk: (1.56)

We can then change variables back tok =
p

k2 � p2

T =
�

� 2

�

� 1=2 Z
e� (k� k0)2 � 2

�
�
�
�
C
A

�
�
�
�

2 p
k2 � p2

k
dk: (1.57)

We get8

T =
�

� 2

�

� 1=2 Z
e� (k� k0)2 � 2 �

k

�
�
�
�
C
A

�
�
�
�

2

dk: (1.58)

1.8 Interpretation of Results

When we take the wide wave packet limit, our wavefunction approaches a plane wave with
wave vectork0. In this limit, we can approximate jC=Aj and jB=Aj by their value at k = k0.
When we do so, we �nd that

lim
t !1

R =

�
�
�
�
B
A

�
�
�
�

2

lim
t !1

T =
�
k

�
�
�
�
C
A

�
�
�
�

2

(1.59)

8There is a one part of this derivation that I glossed over. A and C are functions of k so they actually
change during our change of variables. Technically, we should probably denote them with a new name after
the change. But we then change variables back and theA and C term revert to their previous value. No
harm is caused by this omission.
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These are what are typically called the reection and transmission coe�cients Rk and Tk for
wave packet scattering o� a step barrier. We see that these terms are approximate and valid
in the wide wave packet limit whereas the equations we deriveare exact.

Furthermore, equation 1.42 can be interpreted to shows thatthe probability amplitude
for our wave packet to have wave vectork is

P(k) = j� (k)j2 = e� (k� k0)2 � 2
: (1.60)

For our Gaussian wave packet, we can write the reection and transmission coe�cients as

R =
Z

P(k)Rkdk T =
Z

P(k)Tkdk: (1.61)

These equations are just what we would expect. The reectioncoe�cient of a plane wave is
just the sum (or technically integral) of the probability of the incoming wave packet having
a particular wave vector times the reection coe�cient for a wave having that wave vector.

1.9 Arbitrary Wave Packets

Our derivation of equations 1.61 was actually much less general then it need be. There is no
reason that we need to assume that the incoming wave packet isGaussian. Instead, we can
just say that there is some incoming wave packet (x; t ) which initially is far to the left of
x = 0. Next, we write

 (x; 0) =
Z

 k(x)� (k)dk: (1.62)

So,

� (k)dk =
Z

 �
k0 (x; 0)dx: (1.63)

It is still true that
P(k) = j� (k)j2: (1.64)

Although we cannot work out an analytic expression for� (k), we can still carry through
with the calculations.

 (x; t ) =
Z

� (k) k(x)e� iE (k)t=~ (1.65)

Or,

 (x; t ) =
Z

� (k) k(x)e� iE (k)t=~ (1.66)

=
Z

� (k) �
1

p
2�

��
eikx +

B
A

e� ikx

�
� (� x) +  k;m (x)� (x)� (a � x)

+
C
A

ei�x � (x � a)
�

e� i ~k2 t=2m dk:
(1.67)
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Just like before, the reected part of the wave function is

 R (x; t ) =
1

p
2�

Z
� (k)

�
B
A

�
e� ikx � (� x)e� i ~k2 t=2m dk (1.68)

Again, in the large t limit we can ignore the� (� x) We can write this equation as

 R (x; t ) =
Z

eikx

p
2�

� R(k)dk (1.69)

if we make the samex = � x change of variables. We get

 R (x; t ) = �
1

p
2�

Z
� (k)

�
B
A

�
e� i ~k2 t=2m dk: (1.70)

We have

� R(k) = � e� i ~k2 t=2m � (k)
�

B
A

�
: (1.71)

As before

R = lim
t !1

Z
j� R (k)j2 dk =

Z
j� (k)j2

�
�
�
�
B
A

�
�
�
�

2

=
Z

P(k)Rkdk (1.72)

We can do the same for the transmission term

 T (x; t ) =
1

p
2�

Z
� (k)

�
C
A

�
ei�x � (x � a)e� i ~k2 t=2m dk: (1.73)

In the large t limit, we can ignore the� (x � a) term. If we make the change of variables from
k to

p
k2 + p2, we can write  T (x; t ) as

 T (x; t ) =
Z

eikx

p
2�

� T (k)dk (1.74)

where

� T (k) = e� i ~(k2+ p2)t=2m eika �
� p

� 2 + p2
� �

C
A

�
k

p
k2 + p2

: (1.75)

As before,

T = lim
t !1

Z
j� T (k)j2 dk =

Z
j� (

p
� 2 + p2)j2

k
p

k2 + p2

�
�
�
�
C
A

�
�
�
�

2

dk (1.76)

We can change variables back fromk to
p

k2 � p2. When we do so, we get

T =
Z

j� (k)j2
�
k

�
�
�
�
C
A

�
�
�
�

2

dk =
Z

P(k)Tkdk (1.77)

Our derivation of equation 1.61 are perfectly general. Theyhold for an arbitrary potential
and an arbitrary incoming wave packet.
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Chapter 2

A Special Case { The Step Potential

In this section, we will discuss as a practical example the simplest example of a potential
barrier{the step potential

V (x) =

(
0 x < 0

V0 x > 0:
(2.1)

This can be though of as the potential in equation 1.1 witha = 0. Our wave function is

 k(x) =
1

p
2�

��
eikx +

B
A

e� ikx

�
� (� x) +

C
A

ei�x � (x)
�

: (2.2)

We know that  and  0 must be continuous atx = 0. These conditions imply that

A + B = C kA � kB = �C: (2.3)

Or,

B
A

=
k � �
k + �

C
A

=
2k

k + �
: (2.4)

Therefore, the reection and transmission coe�cients across this step barrier are

R =
�

� 2

�

� 1=2 Z
e� (k� k0)2 � 2

�
k � �
k + �

� 2

dk (2.5)

and

T =
�

� 2

�

� 1=2 Z
e� (k� k0 )2 � 2 �

k

�
2k

k + �

� 2

dk: (2.6)

These equations have no analytic solution.1 Nevertheless, we can approximate the solution
by Taylor expanding the (B=A)2 and (C=A)2 factors aroundk = k0 and doing each Gaussian
integral individually. Note that both equations are of the form

G =
�

� 2

�

� 1=2 Z
e� (k� k0)2 � 2

f (k)dk: (2.7)

1At least, no obvious analytic solution.

29



Expanding f (k) gets us

f (k) = f (k0) + f 0(k0)(k � k0) +
f 00(k0)

2
(k � k0)2 + : : : (2.8)

Plugging into the equation above gets

G =
�

� 2

�

� 1=2 Z
e� (k� k0)2 � 2

�
f (k0) + f 0(k0)(k � k0) +

f 00(k0)
2

(k � k0)2 + : : :
�

dk: (2.9)

The �rst term in the integral is 2

f (k0)
�

� 2

�

� 1=2 Z
e� (k� k0)2 � 2

dk = f (k0): (2.10)

Sincex exp(� ax2) is an odd function, we have
Z 1

�1
xe� ax2

dx = 0: (2.11)

The second term in the integral is 0. The third term in the integral is3

f 00(k0)
�

� 2

�

� 1=2 Z
(k � k0)2e� (k� k0 )2 � 2

dk: (2.12)

The third term in the integral is
1
2

1
� 2

� f 00(k0): (2.13)

Our integral becomes

G = f (k0) +
1
2

1
� 2

f 00(k0) + : : : (2.14)

For the T term, we have

f (k) =
�
k

�
C
A

� 2

(2.15)

2 We can calculate this by using the identity

Z 1

�1
e� ax 2

dx =

r
�
a

and change variables tox = ( k � k0).
3We calculate this by using the identity

Z 1

�1
e� ax 2

x2dx =
1
2

r
�
a3

and doing the same change of variables as above.

30



We can work out the derivatives of this function4

f (k) =
�

C
A

� 2 �
k

=
4k�

(k + � )2
(2.16)

f 0(k) =
(k + � )24(� + k2=� ) � 4k� � 2(k + � )(1 + k=� )

(k + � )4
(2.17)

=
4� + 4k2=� � 8k

(k + � )2
(2.18)

f 00(k) =
(k + � )2 (4k=� + 4 � (� � 2k � k2 � k=� )=� 2 � 8)

(k + � )4
(2.19)

=
� 4k3=� 3 � 8k2=� 2 + 28k=� � 16

(k + � )2
(2.20)

= �
�

4k
� 3

+
16
� 2

� �
k � �
k + �

� 2

: (2.21)

It follows that, including the �rst non-vanishing correction, the transmission coe�cient is

T =
4k0� 0

(k0 + � )2
�

�
2k0

� 3
0

+
8
� 2

0

� �
k0 � � 0

k0 + � 0

� 2 1
� 2

: (2.22)

As was discussed in section 1.8, in the limit of large� , the transmission coe�cient reduces
to the classical formula.

The R term can be worked out in the same manner

f (k) =
�

B
A

� 2

(2.23)

=
�

k � �
k + �

� 2

(2.24)

f 0(k) =
(k + � )22(k � � )(1 � k=� ) � (k � � )22(k + � )(1 + k=� )

(k + � )4
(2.25)

= �
4
�

�
k � �
k + �

� 2

(2.26)

f 00(k) =
4
� 2

k
�

�
k � �
k + �

� 2

+
16
� 2

�
k � �
k + �

� 2

(2.27)

=
�

4k
� 3

+
16
� 2

� �
k � �
k + �

� 2

(2.28)

Including the �rst non-vanishing correction, we have

R =
�

k0 � � 0

k0 + � 0

� 2

+
�

2k0

� 3
0

+
8
� 2

0

� �
k0 � � 0

k0 + � 0

� 2 1
� 2

: (2.29)

4We use the fact that d�=dk = k=� .

31



32



Chapter 3

Another Example: the Finite
Potential Barrier

3.1 The Eigenfunctions

We will now example the next most simple potential { the �nite potential barrier. It is
de�ned as

V(x) =

8
><

>:

0 x < 0

V0 0 � x � a

0 x > a:

(3.1)

We can solve the time independent Schr•odinger equation to �nd eigenstates of energyE:

 =

8
><

>:

Aeikx + Be� ikx x < 0

Dei�x + Ee� i�x 0 � x � a

Ceikx x > a:

(3.2)

We can impose continuity of and  0 to �nd the relationship of the plane wave coe�cients.

A + B = D + E (3.3)

kA � kB = �D � �E (3.4)

Dei�a + Ee� i�a = Ceika (3.5)

�De i�a � �Ee i�a = kCeika : (3.6)

We can combine equations 3.5 and 3.6 to get

D =
� + k

2�
ei (k� � )aC (3.7)

E =
� � k

2�
ei (k+ � )aC: (3.8)
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We can combine equations 3.3 and 3.4 to get

A = ( k + � )D + ( k � � )E: (3.9)

Using equations 3.7 and 3.8, we get

A =
�

(k + � )2

4k�
ei (k� � )a �

(k � � )2

4k�
ei (k+ � )a

�
C: (3.10)

Squaring gets us

jAj2 =
�

(k + � )2

4k�
e� i�a �

(k � � )2

4k�
ei�a

� �
(k + � )2

4k�
ei�a �

(k � � )2

4k�
e� i�a

�
jCj2 (3.11)

=
(k + � )4 + ( k � � )4 � (k + � )2(k � � )22 cos(2�a )

16k2� 2
jCj2 (3.12)

=
2k4 + 8k2� 2 + 2� 4 + 4k2� 2 � (2k4 � 4k2� 2 + 2� 4)(1 � 2 sin2(�a ))

16k2� 2
jCj2 (3.13)

=
�

1 +
(k2 � � 2)2

42� 2

�
jCj2: (3.14)

Therefore, we calculate the transmission coe�cient for a plane wave with wave vectork to
transmit across a rectangular barrier

T (rect)
k =

�
�
�
�
C
A

�
�
�
�

2

=
1

1 + ( k2 � � 2) sin(�a )=4k2� 2
: (3.15)

We have to be a little clear here about notation so as to avoid confusion. I will refer to the
transmission coe�cient for a plane wave of wave vectork for a potential step asTk and the
transmission coe�cient for a plane wave of wave vectork for a rectangular barrier asK (rect)

k .
The same applies for the reection coe�cients. We can rewrite T (rect)

k in terms of Rk and Tk :

T (rect)
k =

1
1 � 4Rk sin2(�a )=T2

k

: (3.16)

Using the fact that
T (rect)

k + R(rect)
k = 1; (3.17)

we see that1

R(rect)
k =

4Rk sin2(�a )=T2
k

1 � 4Rk sin2(�a )=T2
k

: (3.19)

1Of course, we could calculate the transmission term using the equation

R(rect)
k =

�
�
�
�
B
A

�
�
�
�

2

(3.18)

and calculate the reection coe�cient explicitly, but it is just more work and gets the same answer.
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Figure 3.1: Here is a
schematic diagram of the
cute argument for deriving
the reection and trans-
mission coe�cients for a
wave packet incident on a
rectangular barrier. There is
some amplitude for the wave
to reect or transmit at the
left side of the barrier. This
is represented by some part
of the wave transmitting and
some part reecting. The
same thing happens at the
right side of the barrier and
so on. Some part of the wave
will be perpetually stuck in
the barrier and successive
parts of the wave will leave
on either side.

3.2 A Cute Argument

To calculate the actual reection from the rectangular barrier, we must �rst �nd the mo-
mentum space representation of the incoming wave packet. Wecan then write the reection
as a

R =
Z

P(k)R(rect)
k dk: (3.20)

Although this integral is terribly ugly, it is the exact expression for the reection of a wave
o� of a rectangular barrier.

There is a cute argument that can be used to derive this same reection and transmission
coe�cients for the rectangular potential. We imagine the incoming wave as a localized packet
moving to the right. Suppose that its wave vector distribution is centered onk0. This is
shown in �gure 3.1. When the wave arrives at the left of the potential, there is some
amplitude for it to reect into the barrier and some amplitude for it to transmit through
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the barrier. These coe�cients are, at least approximately,just the plane wave coe�cients
for a plane to transmit through a step potential. Next, thereis some amplitude for the wave
packet which transmitted the �rst time to reect o� the barri er on the right and then to
transmit through the barrier on the left.2 This would add a termTk0 Rk0 Tk0 to the reection
probability. Of course, there is some amplitude for the waveto transmit the �rst time, reect
o� the barrier on the right, reect o� the barrier on the left, reect o� the barrier on the
right, and to �nally transmit through the barrier on the left . This will add a term Tk0 R3

k0
Tk0

to the total reection. The total reection will be a sum of al l the possible ways that the
wave could be reected:

R(total) = Rk0 + Tk0Rk0 Tk0 + Tk0 R3
k0

Tk0 + : : : (3.21)

= Rk0 + Rk0T
2
k0

(1 + R2
k0

+ R4
k0

+ : : :) (3.22)

= 2Rk0=(1 + Rk0 ): (3.23)

Of course, this expression will not valid generally becauseof many of the objects brought
up earlier in this paper about using plane waves to calculatereection and transmission
coe�cients. But it should be valid under certain assumptions which we can write formally.
In particular, we insists that the wave packet is su�ciently close to a plane wave. This is
true when the width of the wave packet ink space is su�ciently narrow:

� k � k0: (3.24)

We also require that the wave wave packet is su�ciently narrow in comparison to the square
barrier that it interacts with only one side of the barrier at any one time:

a � w � 1=� k: (3.25)

Formally, we expect this expression for the reection coe�cient to be valid when

1=a � � k � k0: (3.26)

We can prove that the exact result for the reection coe�cient (equation 3.19) will reduce
in the proper limit (equation 3.26) to equation 3.23. We have

R =
Z

P(k)
4Rk sin2(�a )=T2

k

1 � 4Rk sin2(�a )=T2
k

dk: (3.27)

First, we note that the limit holds only when the average energy of the incoming beamk0 is
large. This is true only whenRk0 � 0 and Tk0 � 1. In this limit, the denominator is just 1
and we can ignore the other factor ofTk :

R =
Z

P(k)4Rk sin2(�a )dk: (3.28)

2This argument is a bit lacking because we have not worked out the reection and transmission coe�cients
for a plane wave going the other way across a potential step. It is completely trivial to work it out and it
turns out that the reection and transmission coe�cients ar e exactly the same.
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To good approximation, we can model the incoming wave packetin k space as relatively
constant over some range fromk0 � � k to k0 + � k. The probability is

P(k) =

8
><

>:

0 k < k 0 � � k

1=2� k k0 � � k � k � k0 + � k

0 k > k 0 + � k:

(3.29)

Our integral becomes

R =
Z k0+� k

k0 � � k

1
2� k

4Rk sin2(�a )dk: (3.30)

In the limit � k � k0, we know that Rk and Tk do not vary substantially over our integral
range and can be taken outside of the integral and replaced with their value at k0:

R = 4Rk0

1
2� k

Z k0+� k

k0 � � k
sin2(�a )dk: (3.31)

Since a � 1=� k, the function sin(�a ) oscillates many time ask varies from k0 � � k to
k0 + � k. We may carry out the integral by multiplying the width of the integral by the
average value 1/2 of sin squared:

R = 4Rk0

1
2� k

� 2� k
1
2

= 2Rk0 : (3.32)

Of course, this is not exactly the same as equation 3.23 derived using the cute argument.
But since that formula is only valid in the large k0 limit, that equation also approaches
2Rk0 . The formalism introduces in this paper correctly predictsthe reection coe�cient for
the rectangular potential. We can also understand where the2Rk0 comes from in an even
more intuitive way. Refer back to �gure 3.1. Since theRk0 term is small, we see that the
only appreciable terms which will contribute to the reection of the plane wave are the �rst
reection Rk0 o� the left part of the barrier and the term where the wave packet transmits,
reects, and transmits. It has a valueTk0 Rk0 Tk0 � Rk0 . Any of the higher order terms
require at last three reections and will be negligible, so the total reection is approximately
2Rk0 .

On the other hand, if we naively used the plane wave approximation for a plane wave of
wave vectork, we would have though that the reection coe�cient was

R(rect)
k0

=
4Rk0 sin2(� 0a)=T2

k0

1 � 4Rk0 sin2(� 0a)=T2
k0

: (3.33)

Of course, taking the same limits as in equation 3.26, we �nd the denominator to again
be approximately 1 and can again ignore theTk0 term. But even so, we would predict the
reection probability to be

R(rect)
k0

! 4Rk0 sin2(� 0a): (3.34)

This function oscillates from 0 to 4Rk0 and is qualitatively di�erent from the exact result
derived above. We see that this the plane wave approximationis qualitatively di�erent in
this case from the exact result.
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Part III

A Theoretical Discussion of Crystal
Di�raction and an Experimental

Investigation of Microwave Di�raction
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Abstract

We will describe the theory of crystal di�raction. We will then describe the theory of powder
di�raction. The theoretical discussion in this paper and several of the �gures closely follows
chapter 6 of [8]. We will then describe an experimental investigation intocrystal di�raction
that was done using the Pasco microwave optics kit.
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Chapter 4

Crystal Di�raction

4.1 The Bravais Lattice

Crystals are very regular structures. A Bravais lattice is amathematical device used to
describe the regularity and self similarity of a crystal. A Bravais lattice is an array of lattice
points. Each lattice point's position is of the form

R = n1a1 + n2a2 + n3a3: (4.1)

Here, a1, a2, and a3 are three linearly independent basis vectors andn1; n2; n3 can be any
possible integer.

The simplest Bravais lattice is the cubic lattice. It represents a cubic crystal structure.
A lattice cell of this structure is shown in �gure 4.1. The lattice vectors are de�ned as:

a1 = ax̂ ; a2 = aŷ ; a3 = aẑ: (4.2)

There are two other very common Bravais lattices. Once is theface-centered cubic lattice.
It is a cubic lattice where each side of the cubes have a lattice point in the middle. A

a1
a2

a3

Figure 4.1: The cubic lattice. This
is the simplest Bravais lattice.
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face-centered cubic lattice is shown in �gure 4.2a. We can pick as a set of Bravais lattice
vectors:

a1 = a
2 (ŷ + ẑ ); a2 = a

2(ẑ + x̂ ); a3 = a
2(x̂ + ŷ ): (4.3)

These are labeled in the �gure. The other common structure isthe body-centered cubic. It
can be thought of as a cubic lattice where each cube has another lattice point in the middle
of it. Part of this crystal is shown in �gure 4.2b. We could pick as our set of Bravais lattice
vectors j

a1 = ax̂ a 2 = aŷ a 3 = a
2(x̂ + ŷ + ẑ): (4.4)

But there is a more useful set of Bravais lattice vectors

a1 = a
2(ŷ + ẑ � x̂ ); a2 = a

2(ẑ + x̂ � ŷ ); a3 = a
2 (x̂ + ŷ � ẑ ): (4.5)

These vectors are shown in the �gure.

a3

a1

a2

(a) A cubic cell of the face-centered cubic lat-
tice.

a3

a1

a1

(b) A cubic cell of the body-centered cubic lattice.

4.2 The Reciprocal Lattice

We will introduce the reciprocal lattice. It will be an important tool in discussing crystal
di�raction. The reciprocal lattice for a Bravais lattice is as all wave vectorsQ that have the
periodicity of a Bravais lattice. Mathematically, this means that

eiQ �(r + R ) = eiQ �r (4.6)
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for all R in the Bravais lattice. This condition is equivalent to

eiQ �R = 1: (4.7)

The reciprocal lattice is also a Bravais lattice so so a reciprocal lattice is generated by
reciprocal lattice vectors. We can construct reciprocal lattice vectors from Bravais lattice
lattice vectors as follows

b1 = 2�
a2 � a3

a1 � (a2 � a3)
b2 =2�

a3 � a1

a1 � (a2 � a3)
b3 = 2�

a1 � a2

a1 � (a2 � a3)
(4.8)

Then, any vector in the reciprocal lattice vectorQ can be written as

Q = q1b1 + q2b2 + q3b3: (4.9)

We can prove that this vector satis�es equation 4.7 as follows. Sincea2� a3 is normal to a2

and a3, it follows that a2 � b1 = a3 � b1 = 0. Furthermore,

a1 � b1 = a1 �
�
2�

a2 � a3

a1 � (a2 � a3)

�
= 2 � (4.10)

It follows that 1

bi � a j = 2�� ij : (4.12)

For any Bravais lattice vector of the formR = n1a1 + n2a2 + n3a3 we have

Q � R = 2�q 1n1 + q2n2 + q3n3 (4.13)

from which it follows that equation 4.7 is only satis�ed if and only if q1, q2, and q3 are all
integers. From this, we see thatb1, b2, and b3 are reciprocal lattice vectors.

As an example, we can determine the reciprocal lattice vectors for the body-centered
cubic lattice from equation 4.5. The denominator of equation 4.8 is

a1 � (a2 � a3) = a
2 (ŷ + ẑ � x̂ ) � [a

2 (ẑ + x̂ � ŷ ) � a
2(x̂ + ŷ � ẑ )] = a3=2 (4.14)

1 Here, we use the identity

a1 � (a2 � a2) = a2 � (a2 � a1) = a3 � (a1 � a2): (4.11)
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We calculate each of the terms

b1 = 2�
a2 � a3

a1 � (a2 � a3)
(4.15)

= 2�
a
2(ẑ + x̂ � ŷ ) � a

2 (x̂ + ŷ � ẑ )
a3=2

(4.16)

= 2�
a (ŷ + ẑ ) (4.17)

b2 = 2�
a3 � a1

a1 � (a2 � a3)
(4.18)

= 2�
a
2(x̂ + ŷ � ẑ ) � a

2 (ŷ + ẑ � x̂ )
a3=2

(4.19)

= 2�
a (ẑ + x̂ ) (4.20)

b3 = 2�
a1 � a2

a1 � (a2 � a3)
(4.21)

= 2�
a
2(ŷ + ẑ � x̂ ) � a

2 (ẑ + x̂ � ŷ )
a3=2

(4.22)

= 2�
a (x̂ + ŷ ): (4.23)

(4.24)

The reciprocal lattice for a body-centered cubic crystal isa face-centered cubic lattice. It
is also true that the reciprocal lattice for a face-centeredcubic is a body-centered cubic.
The easiest way to see this is to note from the symmetry of equation 4.7 that the reciprocal
lattice of a reciprocal lattice is the original Bravais lattice.

4.3 Crystal Di�raction

Figure 4.2: The Bragg condition for con-
structive interference and therefore inten-
sity maxima. We divide the crystal into
Bragg planes. Bragg said that there would
be constructive interference where the light
reected o� the Bragg planes was in phase.

b b

b b b

bb

b b b

b

b b b

b
dsin(� )

�
d

Crystal di�raction is an important way to learn about the int ernal structure of matter.
Bragg proposed a rather unphysical model to explain wave di�raction o� crystals. He said
that we can divide a crystal into Bragg planes. This is shown in �gure 4.2. We can think of
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the incoming waves as scatter o� of the Bragg planes. There will be construcive interference
only when the light leaving the Bragg pleans is in phase. The condition for constructive
interference is knwon as Bragg's Law:

n� = 2dsin�: (4.25)

Here, d is the distance between Bragg planes and� is the incident angle of the waves. This
condition holds for any integraln. There are many ways of dividing up a crystal into Bragg
planes and each one can lead to di�raction peaks.

b

b

n̂

R cos� = R � n̂

R cos� 0 = � R � n̂ 0

k 0

k 0

k k

n̂ 0

R

Figure 4.3: This �gures shows
two atoms separated by a Bravais
lattice vector R. This diagram
shows the path di�erence taken by
two beams of light that di�ract
through the crystal.

The Von Laue approach to studying di�raction is more physical but leads to the same
conclusion. We models crystal scattering by having waves scatter o� of each atom in the
crystal separately. The condition for constructive interference is that the path di�erence of
the waves for all the atoms is only di�erent by integers time the wavelength. Constructive
interference for a particular pair of atoms seperated by a Bravais lattice vector R is shown
in �gure 4.3. Two beams of light enter from the top, are scattered by the atoms, and leave
to the right. Our beam is monochromatic so the incoming waveshave the same momentum
k. We assume that the di�raction is elastic so the waves all leave with the same wave vector
(jk 0j = jk j).

The path di�erence is

R cos� + R cos� 0 = R � (n̂ � n̂ 0): (4.26)

The Von Laue condition for constructive interference is that

R � (n̂ � n̂ 0) = m� (4.27)

for some integerm. If we multiply by 2 �=� , we get

R � (k̂ � k̂
0
) = 2 �m: (4.28)

Or,

ei (k 0
� k )�R = 1: (4.29)
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This condition must hold for all Bravais lattice vectorsR, Q = k 0 � k must be an element
of the reciprocal lattice.

We can prove that this condition is equivalent to Bragg's law. Since our beam is
monochromatic, jk j = jk 0j. From this, it follows that k = jk � Qj. Squaring both sides
of the equation

k2 = jk � Qj2 (4.30)

k2 = k2 � 2k � Q + Q2 (4.31)

k � Q = 1
2Q2 (4.32)

k � Q̂ = 1
2Q: (4.33)

the component ofk parallel to Q is exactly half way along the reciprocal lattice vectorQ.
k must lie on a plane which is the perpendicular bisect ofQ. This is a Bragg plane. This is
shown in �gure 4.4.

Figure 4.4: This diagram showsQ = k 0� k
when k = k0.

b

b

k 0

k

1
2Q

1
2Q

Figure 4.5: This �gures shows �gure 4.4.
with k 0 moved onto the Bragg plane and
the head of� k moved onto the head of
k 0. This diagram shows that we can think
of di�raction as being reected o� some
plane in the crystal. We see from this �g-
ure that the incident and reected angles
are equal.

�

�

Q = k 0 � k

� k
k 0

k

b

Now, redraw �gure 4.4 by moving the reciprocal lattice vector k 0 onto the Bragg plane
and movingk onto its head. This is shown in �gure 4.5. Here, the angle betweenk and the
Bragg plane andk 0 and the Bragg plane must both be� . Furthermore, for Bragg planes a
distanced apart, the reciprocal lattice vectors parallel to them all have distances of the form
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Q = 2�n=d with n an integer. From the diagram, we see thatQ = 2k sin(� ). Using this, we
have

k sin� = �n=d: (4.34)

Sincek = 2�=� , we derive Bragg's law.

4.4 Visualization of Di�raction

b b

b b b

bb

b b b

b

b b b

b

b b

b b b

b b b

b b

b

b

b

b

b

K

k

k 0

Figure 4.6: The Ewald sphere con-
struction. We draw the incoming wave
vector k starting at some reciprocal lat-
tice point. We draw a circle of radius
k centered at the head ofk (really,
it should be a sphere). If the Ewald
sphere intersects some other reciprocal
lattice point, we can draw a new vec-
tor k 0 from that point to the center of
the circle such thatk � k 0 is in the re-
ciprocal lattice. This is the condition
for light to preferentially scatter. So,
whenever the Ewald sphere intersects
a reciprocal lattice point, we will have
constructive interference.

We introduce a new construction called called the Ewald sphere to help think about
di�raction. Figure 4.6 show a diagram of an Ewald sphere. We begin by placing the tail of
the incoming wave vector on a reciprocal lattice vector. We then draw a sphere of radiusjk j
centered on the head ofk . This is called the Ewald sphere. Whenever another reciprocal
lattice vector intersects the Ewald sphere, we can draw a reected vector k 0 that begins
at the other reciprocal lattice vector and ending at the headof k such that k 0 � k is in
the reciprocal lattice. This is the condition for constructive interference. So only when a
reciprocal lattice point intersects that Bragg plane will there be constructive interference,
and we can use the Ewald construction to determine the angle of scattering.
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Chapter 5

Powder Di�raction

Although a presentation of powder di�raction will not be needed for the following discussion
of microwave optics, it will be discussed here because of provides a background for the powder
di�raction software part of my plan.

Q

b

k

k 0

Ewald Sphere

Reciprocal lattice points

(a)

Q

k

k 0

2�

b

� � 2�
2

(b)

Figure 5.1: These �gures show the Ewald sphere for powder di�raction. Because powder
di�raction is di�raction o� of many small crystals with di�e rent orientations, there can be
constructive interferences for reciprocal lattice vectors rotate at any angle. In these �gures,
we draw an Ewald sphere and then one particular reciprocal lattice vector Q which is rotated
through all possible angles. The intersection of these two spheres leads to constructive
interference (sinceQ = k � k 0). Therefore, for each reciprocal lattice vector there willbe
associated scattering in a cone. 2� is the angle betweenk and k 0.

Our previous discussion of crystal di�raction assumed thatthe crystal that we are imag-
ing represents a Bravais lattice and is self similar over very large distances. But powder
di�raction is di�erent because what is imaged is a crystalline powder, where there are many
pieces of crystal which are large on a microscopic scale but small on a macroscopic scale.
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Powder di�raction is achieved experimentally by grinding acrystal with a mortar and pestle
until it is very �ne.

When we perform di�raction on a powder, we e�ectively scatter some light o� of crystals
with every possible orientation. This corresponds to crystals with reciprocal lattice vectors
that are rotated in all possible directions.

We can draw an Ewald sphere to analyze this situation. The reason why our Ewald
sphere is di�erent is because each reciprocal lattice vector will generate a sphere (with
di�erent points on the sphere corresponding to di�erent crystals in the powder). The Ewald
sphere will intersect the sphere of one of th reciprocal lattice vectors in a circle1 Figure 5.1
shows a �gure of these two spheres.

This circle of intersection will correspond to a cone of light emanating from the scattering
powder. The scattering angle 2� can be calculated from �gure 5.1b as follows. Since we have
drawn an equilateral triangle, it must be that

cos
�

� � 2�
2

�
=

Q=2
k

(5.1)

Or,

Q = 2k sin(2�=2): (5.2)

Sincek = 2�=� , we have

Q =
4� sin(2�=2)

�
: (5.3)

Therefore, if we know the magnitudes of the reciprocal lattice vectors for a particular crys-
tal, we can use equation 5.3 to calculate the scattering angles that would be found when
performing powder di�raction. Alternately, we could measure the scattering angles due to
powder di�raction and use those to calculate the magnitude of the reciprocal lattice vectors
of the crystal. These values often be used to reconstruct thestructure of the reciprocal
lattice and subsequently the actual Bravais lattice. Powder di�raction therefore provides an
experimental technique to determine the structure of crystals.

The primary purpose of the di�raction software that was written as part of this plan is
to infer the Q values from powder data by measuring the scattering angle.2 The reason why
the software is so complicated is because what is directly measured experimentally is an area
di�raction pattern. The cones of light intersect the area detector in conic sections and it is
di�cult in practice to work from the area data to a list of Q values. We will explain how we
can use the list ofQ values to determine the crystalline structure of some powder sample.
For example, below is a a list of the crystal Lanthanum Hexaboride's Q values

1This only happens for reciprocal lattice vectors smaller then 2k.
2Actually, all the program really does is produce a plot of intensity as a function of Q and another

program must be used to calculate the actualQ values based on the peaks of the intensity plot.
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Figure 5.2: A picture of of a face-centered cubic Bravais lattice. On top of many of the
lattice points is the distance to the lattice point from the bottom left lattice point if the
space of a lattice cube is 1.

1.511543809 = 0:707� 2:137646823�
p

1=2 � 2:137646823
2.137646823 = 1:000� 2:137646823 = 1� 2:137646823
2.618102966 = 1:225� 2:137646823�

p
3=2 � 2:137646823

3.023087619 = 1:414� 2:137646823�
p

2 � 2:137646823
3.379873753 = 1:581� 2:137646823�

p
5=2 � 2:137646823

3.702525225 = 1:732� 2:137646823�
p

3 � 2:137646823
4.275148198 = 2:000� 2:137646823� 2 � 2:137646823
4.534631428 = 2:121� 2:137646823�

p
9=2 � 2:137646823

4.77990514 = 2:236� 2:137646823�
p

5 � 2:137646823
5.013313099 = 2:345� 2:137646823�

p
11=2 � 2:137646823

5.23603139 = 2:449� 2:137646823�
p

6 � 2:137646823
5.44989618 = 2:549� 2:137646823�

p
13=2 � 2:137646823

These Q values are given in units of inverse angstrom. If we examine the ratio of the
Q values, we see from �gure 4.2a that it is the same as the ratio of the lengths of the
face centered cubic Bravais lattice.3 It must be that the reciprocal lattice is face-centered

3Actually, I suspect that this list of Q values did not come from real data because the numbers come
out a little too perfect. I was given theseQ values to use during di�raction image calibration. These values
are used to measure parameters of the experimental setup when Lanthanum Hexaboride is imaged. These
values are probably calculated based on our best guess at what the lattice spacing is because that is what
the data should be calibrated o� of. Presumably, experimentally measuredQ values are not quite so nice.
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cubic with a cubic cell of width 2:137646823=�A. This means that the Bravais lattice is
body-centered cubic with a cubic cell of width 2:93�A.

54



Chapter 6

Microwave Optics

(a) The Pasco microwave transmitter. This pic-
ture is from [10].

(b) The Pasco microwave receiver.
This picture is from [10].

Figure 6.1:

Because of Bragg's law, to measure a crystal with spacing of order d, one must use light
whose wavelength is of similar size. This is so the scattering angle� is neither too large nor
too small. Typically, x-ray di�raction (wavelength of order 1 angstrom) is used to study
solids who's crystalline structure typically is of order 1 angstrom.

Pasco Scienti�c manufactures an experimental kit that can be used to study di�raction at
a much di�erent scale. It creates electromagnetic waves in the microwave spectrum. Pasco
claims that their transmitter produces microwaves of wavelength 2.85cm. Because of this,
the crystal that should be di�racted should have a characteristic spacing of centimeters,
which is easily visible and constructable.

To realize this experimentally, the Pasco microwave di�raction kit comes with a trans-
mitter, a receiver, a goniometer, and a rotating table. Figures of the transmitter and receiver
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(a) The goniometer. The circular middle
allows for the measurement of the angle
between the arms. The transmitter and
the receiver can slide directly onto the
two arms. This picture is from [10].

(b) The rotating table. This table �ts
on top of the circular middle of the go-
niometer. A crystalline structure can
be placed on top of it. This picture is
from [10].

Figure 6.2: The cubic lat-
tice that came with the
microwave di�raction kit.
The cubic lattice contains
100 metal spheres. It is a
5 � 5 � 4 array. Picture
from [10].

Figure 6.3: The equip-
ment setup. Here, the re-
ceiver and transmitter are
attached to the arm of the
goniometer and the rotat-
ing table is placed on the
middle of it. The crys-
talline structure is placed
on top of the table. Pic-
ture from [10].
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are shown in �gure 6.1. Figures of the goniometer and rotating table are shown in �gure 6.
The goniometer acts as a base which attaches the transmitterto the receiver. The middle
of the goniometer holds the rotating table and on top of that rests the crystalline structure
which will be images. A �gure of the crystalline structure which the Pasco microwave optics
kit comes with in shown in �gure 6.2. It is a 5� 5 � 4 cubic structure. A �gure of the total
assembly is shown in �gure 6.3.

Using this experimental setup, we can pick a particular Bragg plane and measure the
intensity of the scattered microwaves as a function of angle� , just as in �gure 4.2.

The particular experiment that done using the microwave optics kit involved measuring
the di�raction o� of the (100) plane shown in �gure 6.4.

Figure 6.4: Several possi-
ble Bragg planes for a cubic
crystal. Picture from [10].
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Figure 6.5: The inten-
sity as a function of scat-
tering angle o� of the
(100) plane shown in �g-
ure 6.4.

Figure 6.5 shows a plot of the di�raction data that was collected using the experiment.
There is reason to believe that all of the data for� below about 15 degrees should not
be believed because the intensity that is recorded is comingfrom microwaves which don't
di�ract at all but instead go directly through the crystal. F or � above about 15 degrees, we
see that there are three di�raction peaks at 18� , 23� , and 50� .
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According to Pasco, the characteristic atomic spacing of this crystal is 3.8cm and the
wavelength microwaves are 2.85cm. From this, it follows that we should see di�raction
peaks at 22� and 49� . The di�raction peak at 18� evidently came from di�raction o� of a
di�erent crystal. The other peaks are in good agreement withthe theory.
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Chapter 7

Tips and Tricks

7.1 Calibration

The \ Calibration " tab can be used to load di�raction data into the program. The tab
can be used to calibrate di�raction data to determine the experimental parameters that
characterize the experiment. The data can be loaded using the \Data File: " input. The
program recognizes \mar2300", \ mar3450", \ mccd", and \ tiff ", and \ edf " data. Multiple
�les can be loaded into the program by selecting multiple �les with the �le selector. The
sum image will be used.

This program characterizes a di�raction experiment according to the parameters:

� \ xc: ", \ yc: " - the x and y coordinates on the detector where the incoming x-ray beam
would have hit the detector were there no sample in the way (inpixels).

� \ d: " - the distance from the sample to detector (in mm).

� \ E:" - the energy of the incoming beam (in eV).

� \ alpha: ", \ beta: " 2 tilt parameters of the detector (in degrees).

� \ R:" - the rotation of the detector around the center (in degrees).

� \ pl: " - the pixel length of the image. The width of one pixel (in microns).

� \ ph: " - The pixel height of the image. The height of one pixel (in microns).

Before calibrating an image, three things must be done. First, the calibration data must be
loaded. Second, aQ data �le with the standard Q values for the sample must be loaded.
Third, an initial guess of the calibration parameters must be loaded. This can be done with
the \ Parameters" inputs. A decent guess at the calibration parameters can sometimes be
found in the header of a di�raction �le. These values can be loaded into the program using
the \ Get From Header" button to. The \ Do Fit " button will perform the calibration and
�nd a best guess at the real experimental parameters.
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The \ Work in Lambda" selection in the \Calibration " menu can be used to switch the
program to work with the x-ray's wavelength instead of its energy. The relationship between
these values isE = hc=� . The calibration parameter \E:" will be replaced with \ � : " and
the current value will be converted.

The \ Q Data:" input can be used to load in standardQ data �les. This program
stores several standardQ �les. The can be selected through the \Standard Q" menu in the
\ Calibration " menu.

The calibration �t can be modi�ed in a couple of ways. The calibration algorithm will
look the di�raction data to �nd di�raction peak. It does so by running from the center of
the image out. The number of peaks that the program tries to �nd can be set with the
\ Number of Chi?" input. This tells the program how many of these radial slices from the
center of the image should be done. The \Stddev?" input tells the program what ratio
higher the peak must be then the standard deviation of the background near the peak in
order for the peak to be considered real. The higher the value, the more picky the program
is about �nding legitimate peaks.

If some of the experimental parmaetesr are known exactly, pushing the \Fixed?" check
box will �x the associated variable so that it will be not re�ned when �tting. The pixel
length and pixel height can never be re�ned so this does not apply for them.

To see how good the current calibration parameters are at characterizing the loaded data,
the \ Draw Q Lines?" check box can be used to make the program draw on the di�raction
image lines of constantQ speci�ed by the Q data �le. The � Q ranges speci�ed in theQ �le
can also be drawn using the \Draw dQ Lines?" check box. The \Draw Peaks?" check box
can be used to display on top of the di�raction image all of thepeaks that were found while
doing the �t.

The di�raction image can be zoomed into by left clicking in the image, dragging the
mouse, and then releasing. The image can be zoomed out of by right clicking on the image.
The image can be panned across by shift clicking on the image and dragging. The image
can be made bigger or smaller by resizing the window.

In the �le menu, the \ Save Image" option can be used to save the current di�raction �le
in several popular image formats. The image will be saved with the current zoom level and
any Q lines, � Q lines, peaks, or masks drawn on top of it.

7.2 Masking

The program can ignore certain pixels in an image when performing di�raction analysis.
This is done on the \Masking" tab. Threshold masking can be used to ignore pixels above
or below a certain value.

All pixels larger than a certain value can be ignored by checking the \ Do Greater Than
Mask?" check box and specifying the value in the \(Pixels Can't Be) Greater Than
Mask:" input. All pixels less than a certain value can be ignored bychecking the \Do Less
Than Mask?" check box and specifying the value in the \(Pixels Can't Be) Less Than
Mask:" input. The overloaded or underloaded pixels will show up asa di�erent color on the
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di�raction and cake displays. That color can be speci�ed by the color inputs next to the
check boxes. When a threshold mask is applied, masked pixelswill not be used during an
intensity integration.

The program can mask certain areas of the di�raction image using polygon masks. The
\ Do Polygon Mask?" check box will enable polygon masking. Any masks in the program
will be displayed over the di�raction data and cake data. Anymasked pixels will not be
used during an intensity integration. The \Add Polygon" button can be used to draw new
polygon masks. To draw a mask, simply push the button, then left click all the nodes on
the di�raction image except the last one, and �nally right click the �nal node. This will
create the polygon. The \Remove Polygon" button can be used to remove polygons from
the di�raction image. Simply push the button, then click on the polygon that should be
removed. The \Clear Mask" button will remove all the polygons form the program. The
\ Save Mask" button will save all the polygons in the program to a �le. The \ Load Mask"
button will load into the program all of the polygons in a �le.

7.3 Caking

A caked image is a plot of di�raction data in Q vs � space. � is a measure of the angle
around the incoming x-ray beam. By convention,� is equal to 0 degrees to the right of
the center of the image. It increases in a counterclockwise direction. The program needs to
know a range and bin size inQ and � in order make a caked plot. the \Do Cake" button
will create a caked plot of the data. The program will presenta new window with the caked
data in it. The caked window can be interacted with just like the di�raction window. Any
Q lines, � Q lines, and peaks that are drawn on top of the di�raction imagewill also be
displayed on top of the cake image. TheQ and � Q lines are just vertical lines on the caked
image. The \Save Data" button will save a caked plot as plain text. The \Save Image"
button will save the caked plot as a popular image format. Theimage will have anyQ lines
or peaks saved drawn on the caked plot saved on top of it.

The \ Do Polarization Correction? " button will apply a polarization correction to
the caked plot. The polarization of the incoming beam can be speci�ed with the \ P?" input.
The formula for calculating the polarization correction is

I = Im=P F (7.1)

P F = P(1 � (sin(2� ) sin(� � 90))2) + (1 � P)(1 � (sin(2� ) cos(� � 90))2) (7.2)

with Im the measured intensity.
There is a convenient button called \AutoCake" which automatically picks the smallest

cake range so that the whole image shows up in the cake. It thenpick the bin size so that
each pixel displayed on the screen is a single bin. It then caked the data. This button can
be used to quickly make a good cake.
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7.4 Integrate

An intensity integration is a plot of average intensity vsQ, � , or 2� . By default, the option
is to integrate in Q or � . The \ Work in 2theta " select in the �le menu can be used make
the program integrate in 2� instead ofQ.

The program needs to know a range (both a lower and upper value) and a bin size in
order to perform an intensity integration. When these values are loaded, the \Integrate "
button will perform an integration. A new window will open up with the data in it. By
default, the integration will be over all possible values ofthe other variable. For example,
if you integrate in Q, it will be over all � . This can be changed using the constraint check
boxes.

For example, selecting the \Constraint With Range on Right? " check box and setting
the \ Chi Lower?" input to 0 and the \ Chi Upper?" into to 90 will cause the integration in
Q to be only of pixel values with� values between 0 and 90.

Just like a caked plot, a polarization can be applied during an intensity integration. The
\ Save Data" button can be used to save out the intensity integration data as two column
ASCII.

7.5 Macro

Macros can often be used to greatly speed up the data analysis. The \ Start Record Macro"
option in the \ Macro" menu will begin recording a macro. After the desired tasks have been
recorded, the \Stop Record Macro" option will stop the recording and save the commands
to a �le. The \ Run Saved Macro" option will run a macro �le.

Small edits to a macro �le can make them much more versatile. Most macro commands
are just the name of the GUI item possibly followed by whatever the GUI would want (such
as a �lename or a number). The macro command to load a di�raction �le is \ Data File: ".
It must be followed by a line with a �lename. It can also be followed by a list of �lenames, a
directory containing di�raction data, or some combinationof each. The program will run the
subsequent macro lines on every �le in the list and all di�raction �les found in any folders in
the list. The loop will end with a subsequent \Data File: " command, a \END LOOP" line,
or the end of the macro �le.

When lopping over di�raction �les, there is special markup which makes it easy to save
�les in a loop to useful places with useful names. They are \BASENAME" and \ FILENAME".
Whenever the program �nds \BASENAME" in a macro �le, it will be replaced with the path
of the current di�raction �le that has been loaded. \FILENAME" will be replaced with the
�lename of the current di�raction �le. You could recreate a di�raction �le (if 's extension was
mar3450) with the macro command \PATHNAME/FILENAME.mar3450". An exmaple of these
keywords being used would be the macro line \Save Integration Data " followed by the
line \ PATHNAME/FILENAMEint.dat ". The macro would always save the intensity integrated
data right next to the di�raction �le with a name similar to th e di�raction �le.
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Chapter 8

An Example

This section will present a pedagogically interesting example which demonstrates several of
the programs important features. The purpose of this chapter is neither to be comprehensive
nor to be particularly detailed. It will instead give a senseof the type of analysis that can
be done with this program. It will motivate the rest of the manual. further details and
information on any of the things described below can be foundin the appropriate sections
of the manual.

David, a user of the program, was studying iron thin �lms using powder di�raction. He
was particularly interested in measuring the shifts in di�raction peaks of a sample. To realize
this experimentally, he capture the image of the standard calibration crystal Lanthanum
Hexaboride (LaB6). Without changing the experimental parameters, he then imaged many
samples for which he wanted to measure the shift.

The steps that are needed to do this analysis will be described. First, we will calibrate
the di�raction detector. This is to say that we want to determine the precise experimental
parameters that characterized the di�raction machine whenthe images were captured (for
example, the distance between sample and detector, the energy of the x-rays, etc). Since
the image of the standard calibration crystal was taken at the same time as the images of
interest, the calibration parameters inferred from the standard crystal can be used to analyze
the rest of data.

To perform this calibration, we �rst opened up the Area Di�raction Machine. Figure 8.1
shows what we are �rst presented with.

From the \ Data File " input, we load into the program the LaB6 �le. Once the �le is
loaded in, a new window opens up which shows the di�raction data. This window is shown
in �gure 8.2.

To do the detector calibration, the program must know theQ values associated with the
standard crystal. Since LaB6 is so common, it is a preset default in the program. We go
into the menu bar, into the \calibration " menu, into the \ Standard Q" menu, and then
selected Lanthanum Hexaboride. This is shown in �gure 8.3.

(More standard Q �les might be added in the future). In order to perform image cal-
ibration, the program �nally needs to know an initial guess at the calibration parameters.
Although one could enter these parameters by hand, often times decent guesses at the ex-
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Figure 8.1: The cali-
bration tab.
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Figure 8.2: The
di�raction data
window.

Figure 8.3: Loading
a standardQ �le.
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perimental parameters are stored in the header data inside of the di�raction image. The
program can try to �nd these header calibration values and put them into the inputs in the
program. To do this, we could pushed the \Get From Header" button. With the image, the
Q values, and an initial guess in the program, we are ready to dothe calibration.

But �rst, we want to examine how good the initial guess is. To do so, we can select the
\ Draw Q Lines?" check box on the Calibration tab. When this is selected, theprogram
will draw on top of the di�raction image red lines corresponding to what di�raction pat-
tern should show up on the detector (for the given calibration parameters andQ values).
Figure 8.4 shows what the program displays for our example.

Figure 8.4: The di�raction im-
age with constant theQ lines dis-
played upon it. These lines are
calculated for the calibraiton pa-
rametesr found in the header of
the image. They are not partic-
uarly accurate.

Of course, our initial guess isn't great so the red lines don't match too well with the
loaded patter. The data will look like

We can do a cake of the data. A caked plot is a presentation of the data in a di�erent
parameter space. Thex axis is Q and the y axis is � . Ideally, if the calibration parameters
are known exactly, the caked data will show up as many vertical lines. We can cake the data
by going to the cake tab. This tab is shown in �gure 8.5.

On this tab, we have to pushing the \AutoCake". When we do so, a new cake window
opens up. Figure 8.6 shows what the program displays for our example.

We see that for The caked data with the initial guess calibration parameters, our di�rac-
tion lines have a systematic wiggle. It might be hard to see with the full image, but by
zooming into just one line we �nd the di�erence to be much moreobvious. A zoomed in
range is shown in �gure 8.7.

This means that our initial guess at calibration parametersis not great. We can now do
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Figure 8.5: The cali-
bration tab.
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Figure 8.6: A caked plot done
with the calibration parameters
found in the header of the im-
age. The header parameters are
not particuarly obvious and the
di�raciton peaks are not partic-
uarly straight. Calibratin helps
improve the strightness of the
di�raciton peaks.

Figure 8.7: A zoom in of the cake
shown in �gure 8.6. When zoomed
into di�raction image, the poor
calibration becomes much more
obvious.
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the calibration. To do so, we push the \Do Fit " button on the \ Calibration " tab. If the
calibraiton did a good job, the constantQ lines drawn on the di�raction image move so that
they are entirely over the di�raction pattern. This is shown in �gure 8.8.

Figure 8.8: The di�raction win-
dow after being calibrated. The
constant Q lines fall well on top
of the di�raction peaks.

The di�raction peaks on the caked image become much straigher. The caked window
after calibraiton is shown in �gure 8.9.

They look good even when zoomed in. A corresponding zoom in ofthe caked window in
shown in �gure 8.10.

After caking the calibrated data and convincing ourselves that our calibration parameters
are good, we can save the calibration parameters to a �le for later use. We can do so
using the \Save to File " button on the \ Calibration " tab. After selecting the location
\ C:/Data/LaB6 cal.dat ", the calibration �le gets saved as

Listing 8.1: 'The Calibration Parameters File'
1 xc 1722.966078 0
2 yc 1724.227970 0
3 D 122.691351 0
4 E 12707.219316 0
5 alpha -0.052910 0
6 beta 0.130553 0
7 rotat ion -41.523477 0
8 pixelLength 100.000000
9 pixelHeight 100.000000
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Figure 8.9: The cake window af-
ter calibration. The lines are
much straigher then the lines in
�gure 8.6 before calibration.

Figure 8.10: A zoomed in part of
�gure 8.9. Even at a large zoom
in, the line remains very straight.
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Figure 8.11: The
pixel masking tab.
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As can be seen in �gure 8.2, there is a beam stop on the left sideof the image which is
obstrucing part of the image. We know that none of the pixels blocked by the beam stop
contain any interesting information so we are going to want to tell the program to ignore
any pixels blocked by the mask. We can do so with a polygon mask. All polygon masking
is done on the \masking" tab. A screenshot of this tab is shown in �gure 8.11. We want to
add a rectangular polygon mask on top of the beam stop in the image. To do so, we push
the \ Add Mask" button. We then move to the di�raction image and draw the beamstop on
the image by left clicking nodes on the screen. We add the �nalnode by right clicking. After
having drawn the polygon mask, our di�raction image is shownin �gure 8.12.

Figure 8.12: Here is the same di�raction
data as in �gure 8.2 but with a polygon
mask drawn over the beam stop. This
polygon mask will stop the beam stop
below it from being used in subsequent
data analysis.

Once we decide we are happy with our polygon mask, we can save it to a �le using the
\ Save Mask" button. The �le gets saved out as

Listing 8.2: 'beam stop mask.dat'

1 # Polygon (s) drawn on Mon Apr 14 00:33:12 2008
2 25.6749379653 1634.63771712
3 42.7915632754 1814.36228288
4 1959.85359801 1857.15384615
5 1959.85359801 1626.07940447

We can then load in this mask when we do the rest of our analysis. The mask will make
sure that none of the the pixels within the beam stop are used for any subsequent analysis.

Now, we are going to want to perform an intensity integrationof the rest of our data.
We can use the intensity integrate data to look for peaks in the data. The steps for doing
the rest of this analysis are as follows. Load in particular �le we are interested in. Load
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in these calibration parameters using the \Load From File" button on the \ Calibration "
tab.1. Next, we can load in our previously recorded beam stop mask using the \Load Mask"
button on the \ Masking" tab. We also have to make sure polygon masks are used in the
analysis by making sure the \Do Polygon Mask?" check box is selected. With everything
loaded into the program, we can perform aQ integration by going to the \Integrate " tab.
The integration tab is shown in �gure 8.13

Figure 8.13: The in-
tegration tab.

We set the range of theQ integration by setting \ Q Lower?" to 0 and \ Q Upper?" to
5. We then set the precision of the integration, or the bin size, by setting the \Number of
Q?" input to 300. Finally, we push the left \ Integrate " button and a window showing the
di�raction data opens. For a particular iron sample, this window is shown in �gure 8.14.

We can save this data to a �le with the \Save Data" button on the \ Integration " tab.
This data is saved out as two column ASCII. After doing this for all the di�erent �les that we
have, we can load all the data into another program, such as Microsoft Excel, and compare
the peaks.

1If you just did the calibration, the parameters should already be in the inputs. The point is just that
you could load the parameters into the program if you were, say, to open the program at some later point
in time.
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Figure 8.14: The inten-
sity integration window
for a particular iron
sample.

But if there are a lot of �les to analyze, this whole process can be very time consuming.
Instead of doing this analysis by hand, we can automate the process by writing a macro to
analyze all the �les one at a time. First, we put all of our datainto \ C:/Data/ ". The macro
that we can run is

Listing 8.3: 'A macro to automate the analysis'
1 Data File :
2 C:/ Data/
3 Load From File
4 C:/ Data/ LaB6_cal .dat
5 Load Mask
6 C:/ Data/ beam_stop_mask.dat
7 Do Polygon Mask?
8 Select
9 Integrate Q Lower?

10 0
11 Integrate Q Upper?
12 5
13 Integrate Number of Q?
14 300
15 Integrate Q-I
16 Save Integrat ion Data
17 PATHNAME / FILENAME_int. dat

The �rst command loads into the program all of the di�raction �les in the folder \ C:/Data/ "
one at a time and runs the rest of the analysis on that particular �le. The program then
loads in the calibration �le that we saved earlier and sets the integration bounds. Then the
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progarm loads in the beam stop mask. Then, the program does aQ vs intensity integration
and saves the intensity integrated data to a �le. The PATHNAME keyword gets repalced
with teh path leading up to the particular �le and the FILENAM E keyword gets replaced
with the particular �le's name. For example, the �le \ FeL2 d070.mar3450" in the folder
\ C:/Data/ " would be replaced with \C:/Data/FeL2 d070 int.dat " This command will let
us save out of our intesnity integrated data next to the corresponding di�raction �le with a
useful �lename.

After we run this macro, all of our data will be saved out into text �les. We can, for
example, open the �les in Excel and plot the di�erent di�ract ion patterns on the same
graph. If we did this, we would obtain a plot that looked something like the graph shown in
�gure 8.15.

Figure 8.15: An example of what the shift
in peaks might look like when two di�rac-
tion patterns were plotted in Excel on top
of one another.
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Chapter 9

Viewing Di�raction Data

Figure 9.1: The cali-
bration tab. This is
what you see when
you �rst open the
program. This tab
allows you to load
di�raction data into
the program.

When you �rst opep the Area Di�raction Machine, you will see the calibration tab. It
is shown in �gure 9.1. The �rst thing you will probably want to do is load di�raction data
into the program. This can be done with the \Data File: " input either by typin in the
�lename by hand and pushing the load button or clicking on thefolder icon and using a �le
selector. After the �le is loaded, a di�raction data window will open. This window is shown
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in �gure 9.2.

Figure 9.2: The di�raction
data window. This win-
dow will open after a �le is
loaded. This windows al-
lows you to interact with
di�raction data.

You can use the di�raction data window to interact with your di�raction data. you can:

� Zoom into the data{ left click on the data and hold down on the mouse. When the
mouse is moved around, the program will create a resizing square. When the mouse is
released, the program will zoom into the selected range.

� Zoom out of the data{ right click on the data.

� Pan across the data{ hold shift, push down either mouse button, and then move the
mouse around and the image will move with it. Let go of the mouse to stop panning.

� Resize the window{ click on the bottom right corner of the window and drag. The
window will reszie just like any other window and the data will become larger or
smaller.

� Read coordinates for a selected point{ when mousing over the image, thex, y, Q, � ,
and I values for that pixel will be displayed at the bottom of the window. Q and � will
only be dipslayed if valid calibration data is loaded into the program. See chapter 11.

� Change the Color Map{ the \ Colormaps" selector can be used to change the particular
color map used to display the data.
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� Invert the Color Map { The \ Invert? " checkbox can can be used to invert the colors
of the color map.

� Low & Hi Pixels { The sliders to the right of the image can be used to change the
intensity scaling of the image. The low value corresponds tothe intenisty value that
will be maped to the lowest part of the color map and the hi value corresonds to the
intensity value that will be mapped to the highest part of thecolor map. 1 This feature
is useful because it can help make visible certain intensityranges in the image.

� Log Scaling- By default, intensity values are linearly mapped to colorsin the color map.
The \ Log Scale?" checkbox can be selected to instead apply a log scale mapping of
the intensity values to the color map.

9.1 File Formats

The program can load in Mar data: \.mar2300", \ .mar3450", and the \ .mccd" Mar CCD
format. It can load in standard \.tiff " data. It can load in the ESRF Data Format \ .edf ".
The program can only display square data. Whenever non-square data is loaded into the
program, the program will simply pad out the image until it isa square with pixels who's
intensity is 0.

9.2 Loading Multiple Images

Using the same �le input, you can load multiple �les into the program at the same time. If
multiple �les are put in the \ Data File: " text input and separated by spaces, they will all
be loaded in. Alternately, the di�raction data �le selector can be used to select multiple �les
at the same time. All of the selected �les will be loaded. Whenseveral �les are loaded at
the same time, the program will add the intensities of the images pixel by pixel and work
with the combined image. This can be useful for analyzing several images taken of the same
sample. The program can only add together �les of the same format.

9.3 Saving the Di�raction Image

You can save di�raction data in the program as a popular imageformat. The data can
be saved by doing to the \File " menu bar and selecting the \Save Image" option. The
formats currently allowed are \jpg ", \ gif ", \ eps", \ pdf ", \ bmp", \ png", \ tiff ", and the
ESRF data format \edf ".

Images saved as a popular image format will be saved with whatever threshold masks,
polygon masks,Q lines, � Q lines, and peaks are currently displayed over the data in the

1Technically, what is set is the percentage of the most intense pixel in the image should be mapped to
the lowest or highest value in the color map.
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di�raction data window. And it will be saved at whatever the current zoom level is.2 See
chapter 11 for a discussion of theQ lines, � Q lines, and peaks. See chapter 12 for a discussion
of threshold masks and polygon masks.

Because the program will pad any non-square data when it is loaded to. The program
will always save out all images as squares. If this is undesirable, the saved images will need
to be cropped using another program.

2This is not the case with ESRF data. When an image is saved as anESRF �le, it will be saved un-zoomed
with none of the lines or masks on top of it.
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Chapter 10

Detector Geometries

Detector

Crystal

Figure 10.1: An X-Ray di�raction
setup. X-rays scatter from a 3-D sam-
ple and are captured by a 2-D de-
tector. In this setup, the detector is
perpendicular to the incoming x-ray
beam.

X-ray di�raction can be models as in �gure 10.1. Cones of light leave the crystal at
particular angles to the incoming beam. These cones of lightare captured by a detector. By
convention, the scattering angle of the x-rays measured with respect to the incoming beam is
called 2� . Usually, the interesting thing to measure by doing x-ray di�raction is the scattering
angles of these cones of light. If we placed a detector perpendicular to the incoming beam,
the cones of light would be detected as circles of high intensity. If we knew the distance from
the sample to the detector and the distance from the center ofthe detector to a particular
ring (or really any point on the detector), we could easily calculate the scattering angle of
the light. If the distance from the crystal to the detector isd and the distance from the
center of the detector to our particular point on the detector is r , then the scattering angle
is

tan 2� =
r
d

: (10.1)

This is shown in �gure 10.2. life is not always so simple. The detector is never exactly
perpendicular to the incoming beam. In practice, the detector will always be slightly o�set
with respect to the incoming beam. Failing to account for this would introduce a systematic
error in a measurement of scattering angles.
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Figure 10.2: The same setup as in �g-
ure 10.1. We are now interested in
some particular point on the detector.
2� is the scattering angle of the light
that gets to this point, d is the dis-
tance from the crystal to the detector,
andr is the distance from the center of
the detector to some particular point
(which 2� is associated with). By cen-
ter of the detector, we mean the point
on the detector where the beam would
hit if did not interact with the crystal.

d

r
2�

There is a need to analyze di�raction data on detectors that are not perpendicular to the
incomming x-rays. We will present a theory of tilted detectors �rst developed by Abhik Ku-
mar in [5]. Our derivation will result in di�erent formulas because of a di�erent assumption
about how the detector is tilted.

What we are interested in is mathematically describing position coordinates on a tilted
detector by relating them to more theoretically motivated quantities such as the scattering
angles that would lead to a beam hitting that particular point on the detector. In order to
do this, we must �rst work out the transformation of points on a tilted detector to points
on an untilted detector. This is to say that we want to �gure out where on an untilted
detector the beam would have hit were it to hit that untilted detector instead of the tilted
detector. The point on the titled detector can be though of asthe shadow of the point on
the untitled detector. We will call the point on the untilted detector as measured on the
untilted detector (x; y) and the corresponding point on the tilted detector as measured on
the tilted detector as (x000; y000). The reason for three primes will become obvious shortly.
This is shown schematically in �gure 10.3. Another way to think about this problem is to
imagine putting your head at the sample and then looking directly at some point (x000; y000)
on the real tilted detector. What we want to �gure out is some corresponding point (x; y)
on an imagined untilted detector which would appear to eye tobe in the same direction.

Figure 10.3: Here, the detector is titled by
some arbitrary angle with respect to the in-
coming beam. We will call some arbitrary
point on the tilted detector (x000; y000). We
are interested in relating this point to the
point (x; y) on some imagined untilted de-
tector where a scattered beam would have
hit were that tilted detector in place instead
of the tilted detector.

(x; y)
(x000; y000)

r r 000
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10.1 The Three Tilt Angels

In order to relate these points, we need to �nd a way to describe some arbitrary tilt. To
do so, we will characterize a detector tilt in terms of 3 independent detector rotations. We
will use two orthogonal rotations about thex and y axis followed by one rotation about the
center of the detector. These three angles are shown in �gure10.4. We can solve our original
problem much easier if we deal with each rotation separately.

�
ŷ

(a) The tilt angle � . This
angle characterizes a rota-
tion around the ŷ axis.

�

x̂0

(b) The tilt angle � . This angle
characterizes a rotation around the
x̂0 axis. What exactly x̂0 is will be
described shortly

R

ŷ00

x̂00

(c) The rotation angle R. This is a
rotation about a vector normal to x̂00

and ŷ00. What exactly x̂00and ŷ00are
will be described shortly.

Figure 10.4: Any detector tilt can be characterized as a rotation by � followed by a rotation
by � followed by a rotation around the center of the image byR.

10.2 The � Tilt

We will �rst apply a rotation around ŷ by angle � . To do this, we will �rst consider a
point (x; y) on an untilted detector and project it onto some point (x0; y0) on this rotated
detector. This is to say that we will �gure out where on the detector rotated by angle� a
beam would hit were it to hit the tilted detector instead of the untilted detector. A diagram
of this is shown in �gure 10.5. We can use the geometry of thesediagrams to �gure out the
relationships between the coordinates. Using the propertyof similar triangles, we see that

x
d

=
x0cos�

d + x0sin�
: (10.2)

85



�

ŷ

x̂

(x; y)
(x0; y0)

x0

y0

(a)

x

x0

x0cos�
x0sin�

d

y y0

�

a

b

(b)

Figure 10.5: A diagram of the situation depicted in �gure 10.3 where only the� rotation
about ŷ has been applied.

From this it follows that

x =
dx0cos�

d + x0sin�
: (10.3)

Using similar triangles again, we see that

y
a

=
y0

a + b
(10.4)

d
a

=
d + x0sin�

a + b
: (10.5)

from which it follows that

y =
dy0

d + x0sin�
: (10.6)

So, equation 10.3 and 10.6 give us the proper geometrical equations for relating a point on
the untilted plane (x; y) to the corresponding point (x0; y0) on the �rst plane.

10.3 The � Roll

We can now take this point (x0; y0) on the tilted plane and project it onto another plane
which has been tilted by� about ŷ and a rolled by � around x̂0. To do so, we take the
plane which is rotated by an angle� around ŷ and then rotate it around the line x0. This is
diagrammed in �gure 10.6. A more geometric diagram can be seen in �gure 10.7 and a cross
section of they = 0 plane can be seen in �gure 10.8.

We can use these �gures to determine the equations that we need. We see from �gure 10.8
that f = y00sin� cos� . From �gure 10.7, we see thath = y00cos� . Using the property of
similar triangles, we see that

y
a

=
y00cos�
a + b+ c

(10.7)
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(x0; y0)
(x00; y00)

e
�

�

ŷ

x̂

x̂0

x00

y00

Figure 10.6: A diagram of a plane
that has been tilted about the ŷ axis
by angle� and then aboutx̂0 by angle
� .

x

x00

x00sin�

d

y

�

a

b
�

�(x; y)
(x0; y0)

(x00; y00)

h

e

l

y00

y0

f

c

Figure 10.7: Here is a more geomet-
rical diagram of the �gure shown in
�gure 10.6.

c

b

a x

d x00sin�

l

f

x00

e
y00sin�

�

� g

x00cos�

Figure 10.8: Here is a cross sec-
tion of the y = 0 plane of the �g-
ure shown in �gure 10.6.
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Using similar triangles again, we see that

d
a

=
d + x00sin� + f

a + b+ c
(10.8)

From which we can deduce that

y =
dy00cos�

d + x00sin� + y00sin� cos�
: (10.9)

Figure 10.8 shows thatg = y00sin� sin� and that x00cos� = l + g. Using similar triangles
again, we see that

x
d

=
l

d + x00sin� + y00sin� cos�
(10.10)

Plugging in and simplifying, we get

x =
d(x00cos� � y00sin� )

d + x00sin� + y00sin� cos�
: (10.11)

10.4 The R Rotation

Figure 10.9: Here, we take a
point on a plane rotated by angle
� about ŷ and by angle� about
x̂0. We then rotated this point
about a line normal to the plane
going through the origin by angle
R. Rotating the point is equiva-
lent to rotating the plane.

ŷ00

x̂00

(x000; y000)

(x00; y00)

R

We have to deal with the �nal rotation. We will rotate the coordinate (x00; y00) on the
previous detector about a line perpendicular to the plane that goes through the center of the
detector. We will call this �nal point ( x000; y000). This is shown schematically in �gure 10.9.
The equation for this rotation is

x00 = x000cosR + y000cosR (10.12)

y00 = y000cosR � x000cosR (10.13)

Applying equation 10.12 onto equation 10.11 and 10.9 give usthe relationship that we wanted
all along.
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10.5 Relationship to Pixel Coordinates

(x000; y000) is suppose to represent what we actually measure on a real detector. Unfortunately,
things are not quite so easy. We do not actually measure thesevalues. The whole formalism
assumes that we are measuring distances from the point on thedetector where the beam
would hit were it not to be di�racted. Unfortunately, it is no t at all clear what this point
is. A discussion of how to �nd this center center will be givenin section 11, but for now lets
simply state that there is some point on the detector that is the center and call it (xc; yc) We
are interested in some other pixel reading on the detector which corresponds to the point
(x000; y000). Lets call it ( xd; yd). There is some material property of the detector describing the
distance between each pixel (e.g. 1000 mm/pixel). We will call this width ps. We can relate
these quantities using:

x000= ( xd � xc) � ps y000= ( yd � yc) � ps (10.14)

This means that, in terms of (xc; yc) and ps, we can relate (x; y) and (xd; yd) which are
directly measurable experimental quantities.

10.6 Inverting the Equations

We can invert these formula to learn whatx00and y00are in terms ofx and y. We have:

x00=
dx

dcos� � x sin� � cos� (x cos� + d)=( x
y cot � + 1)

(10.15)

and

y00=
dx cos�= ( x

y cos� + sin � )

dcos� � x sin� � cos� (x cos� + d)=( x
y cot � + 1)

: (10.16)

10.7 Q, 2� , and �

We now have a way of relating (x000; y000), a point on a detector with a pitch � , tilt � , and a
roll R applied to it, to a point on an untilted detector (x; y) where a beam of light would have
intersected were it not to hit the tilted detector. With this relationship, we can now relate
these quantities to theoretically motivated quantities. In particular, the angle of scattering
of a beam is by convention called 2� and a quantity measuring the scattering angle around
the incoming beam is called� . These quantities are shown in �gure 10.10. We can see that
the relationship between (x; y) and 2� and � is

tan 2� =
r
d

=

p
x2 + y2

d
(10.17)

and
tan � =

y
x

(10.18)
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Figure 10.10: For a particular point (x; y),
we always associate two quantities: 2� and
� . 2� is the angle of scattering of the
beam, or the angle that an incoming beam
is deected by when it di�racts o� the
crystal. � is a measure of the azimuthal
angle around the beam. It tells you in
what direction radially outwards (with re-
spect to the undeected beam) the outgo-
ing beam was was scattered.

(x,y)

2�
r�

The quantity Q is often used instead of 2� . they are related by

Q = 4� sin(2�=2)=� (10.19)

The reason for usingQ instead of 2� is because di�raction theory shows that theQ values
of preferential scattering of a crystal is a material property independent of the experimental
setup (such asd and � ).

Alternately, energy could be used in this formula. To do so, energy can be related to
wavelength using the De Broglie's formula

E = hc=� (10.20)

Finally, sometimes people use the quantityD instead. D is related to Q by

D = 2�=Q (10.21)

Using equation 10.14, we now have a way of relating pixel coordinates (xd; yd) read directly
o� of a detector to the theoretically motivated coordinates (Q; � ). In order to do this
conversion, we must use the valuesxc, yc, ps, d, � , � , � , and R. A discussion of how these
values can be determined so that this transformation can in practice be done will be given
in section 11
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Chapter 11

Calibration

One of the most common types of analysis of di�raction data isto perform an intensity
integration in Q. This will create a plot of average intensity as a function ofQ. Since pow-
der di�raction procedures cones of light, this means that the intensity should be uniformly
large for someQ values and uniformly low for others, leading toQ values where the intensity
sharply peaks. TheQ values that lead to these peaks can be used to learn structural informa-
tion about the crystals that are being di�racted. So in principle, using the transformations
just described, it should be easy to convert all of the pixel coordinates (xd; yd) into Q values
and then plot average intensity as a function ofQ. The only problem we would face is that
in order to do the transformation, we would need to know the values of the the parameters
that characterize an experiment. These arexc, yc, d, � , � , � , and R.1 Calibration then is
the process used to �nd what we will now call the calibration values.

11.1 The Calibration Algorithm

Although in principle all the calibration values could be experimentally measured, in practice
they can not be directly measured to an acceptable level of precision. Instead, a standard
calibration procedure is used to infer these values from real di�raction data. The trick to
doing this calibration is to image a standard while performing the di�raction analysis of
an unknown sample. Assuming that the di�raction machine wasnot changed between the
collection of the standard crystal and the di�raction of theunknown sample, the calibration
data corresponding to the two images will be the same. So, if we can �gure out the calibration
values of the standard crystal, we can use these values when analyzing the unknown crystal.
This is exactly what is done in practice.

What it means to use a standard crystal is to know the particular Q values for which
the crystal preferentially scatters light. With this information, and the calibration values for
some particular experiment, we could in principle �gure outexactly what di�raction pattern
we should �nd. This do this, we could, for eachQ value, vary � and calculate the (xd; yd)

1The pixel scaleps is usually know in advance as a uniform property of the detector being used.
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coordinate corresponding to that (Q; � ) pair. After using enough� values, we would be able
to �ll in the rings as they would show up on the detector.

In fact, my program can do just this. If you load in a set ofQ values (see section
11.13) and then put into the program some calibration values, and then push the \Draw Q
Values?" check box, you can then see what the particular di�raction image would have
shown up on the detector. This is described thoroughly in section 11.7

Being able to do this still leaves us with a hard problem to solve. For particular calibration
values, we can easily calculate what the di�raction patternshould look like. But what we
really know is what the calibration values are for the known di�raction pattern of a standard
crystal. In order to perform the real calibration, then, we can vary the calibration values
until they make the pattern that can be calculated to show up to match the pattern that
was actually captured. The process of image calibration then is a procedure to `�t' the
calibration values to a di�raction patter with known Q values.

11.2 The Fitting

In order for the �tting algorithm to work, the program must al ready have an initial guess
of the real calibration parameters. This initial guess doesnot have to be perfect, but it
should be somewhat close. The algorithm them requires a listof the known Q values. And
it additionally requires a range for each of theseQ values. In order for the algorithm to
work properly, inside of this Q range (as calculated by the initial calibration value guess)
there should be the peaks that we are interested in and no spurious other peaks that would
confuse the computer.

With the Q values speci�ed along withQ ranges, we can divided up any di�raction image
several regions, where within each region we know there is a unique peak. An example of
this is shown in �gure 11.1.

Our algorithm �rst requires �nding ( x; y) coordinates of many di�raction peaks. To do
so, the algorithm will pick some� value and then spread radially out from the center of the
di�raction image in this � direction.2. Between the givenQ range (for each of theQ ranges),
the program stores an array of all the data point on the line. It then �ts a Gaussian to the
data and the (x; y) coordinate of the center of this Gaussian (x; y) is taken to be the peak.
A diagram showing this algorithm is shown in �gure 11.2. Thismethod is then done for
many di�erent evenly spaced� values and the particular value can be selected by the user
for increased accuracy.

The only really tricky part about this step is that there is not always a consistent di�rac-
tion ring around the image and therefore some of these �ts should not �nd peaks. Whenever
this occurs, the program just ignores the current �t and moves to the next. But �guring out
when some particular peak is bad is not particularly obvious. The method that this program
uses is to ensure each peak passes a few tests. The �rst test isthat the �t peak was too
close to the edge of the image. So any peak where the Gaussian �t's center plus or minus

2Remember that the center is speci�ed by the initial calibrat ion values
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Figure 11.1: A division
of a di�raction image
into Q ranges where
each di�raction peak
falls uniquely inside one
Q range.

Constant� Slice

Q2 + � Q2
Q2

Q2 � � Q2

Q1 + � Q1
Q1

Q1 � � Q1

Figure 11.2: Here is a dia-
gram of the peak �nding al-
gorithm. The solid circular
black lines represent di�rac-
tion peaks on the image. The
dotted lines represent theQ
ranges used to �nd the peaks.
The di�raction peaks are en-
tirely within the ranges. Fi-
nally, the radial line repre-
sents the program picking a
particular � value and look-
ing for peaks inside of theQ
ranges. Finally, the Gaussian
peaks represent the program
�tting a gausian to the inten-
sity pro�le inside of each of
the ranges.
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twice the �t's standard deviation gets outside of theQ range is considered too close to the
edge of the image. The next test that is done is to calculate isthe standard deviation of the
data outside of the peak is signi�cant when compared to the height of the peak �t. To do
this, the code calculates the standard deviation of all the pixels that are farther then twice
the peak's �t standard deviation away from the center of the peak. If the height of the peak
divided by this calculated background standard deviation is smaller then some particular
value, the peak is considered bad. This value is called by theprogram \Stddev" and can be
speci�ed by the user from user. Presumably, the higher that \Stddev" is, the more picky
the program is about what a good peak looks like. This isn't the most robust method for
�nding peaks, but it seems to work pretty well and it should beeasy in principle to add new
tests to the algorithm.

After compiling a list of di�raction peaks in the image, the program can then de�ne a
residual function which we can minimize to �nd the best �t calibration values. To do so,
we can convert the (x; y) coordinate of each of the peaks into a (Qpeak; � peak) pair. For each
of these (x; y) coordinates, we also know what the inputQ list says the experimentalQ
value for this peak should be (which we will callQexp). We can therefore de�ne the residual
function as

Residual(xc; yc; d; �; �; �; R ) =
X

x; y pairs

(Qpeak � Qexp)2 (11.1)

The functional dependence comes from calculatingQpeak from a known (x; y) coordinate.
We see that the smaller the Residual is, the closer we have come to �nding the real cali-
bration values which characterized the di�raction experiment. If we had perfect calibration
parameters, the residual should be equal to zero. But it is well de�ned for any calibration
parameters. So we can take this function of 7 variables and minimize it. The value of this
function at its minimized is the best guess calibration values. There are plenty of computer
algorithm that can minimize arbitrary multi-variable functions. The one that this code
uses is called the Levenberg-Marquardt nonlinear least squares algorithm and the particu-
lar implementation that is used to to perform the calibration is Manolis Lourakis's levmar
library[6]. Ideally, once the minimization is done, a good guess at thecalibration values is
found.

11.3 Calibrating With the Program

Di�raction image calibration is done with the calibration tab of the program. This tab is
shown in �gure 9.1 on tab 79.

As described above, to calibrate an image you must have already loaded into the program
a di�raction data �le, a Q data �le for the particular sample that was taken, and an initial
guess at the calibration data.

Once you have done these three things, you can simply push the\ Do Fit " button to
calibrate the di�raction data. The program will then perform the calibration algorithm as
described in section 11.1. Once the program �nds a best guessfor the new calibration values,
it will put those values into the inputs.

94



While �tting the program will print to the console some useful things. Most interesting,
the program will calculate the residual function divided bythe number of 11.1 and display
print the value to the terminal before and after the calibration is done3 The output will look
like

Listing 11.1: Displaying the Residual
1 - Before fitt ing , the calculated residual is 5.336138 e -04
2 - Doing the fi t t ing
3 - After fitt ing , the calculated residual is 6.532131 e -06

The program will then display the reason why the �tting algorithm decided to quit doing
the �tting and decided that it found its best guess. For example, the program might print
out

Listing 11.2: Reason For Quitting
1 - Reason for quit t ing the fit : 2- stopped by small gradient J^ T e

The di�erent reasons are told to me by the levmar �tting algorithm. I am taking them di-
rectly from the levmar websitehttp://www.ics.forth.gr/ ~lourakis/levmar/ That web-
site says that the di�erent reasons why the �tting can stop are:

� stopped by small gradient ĴT e

� stopped by small Dp

� stopped by itmax

� start from current p with increasednmu

� no further error reduction is possible. Restart with increased mu

� stopped by smalljjejj 2[6]

I think that the �rst reason to quit (stopped by smallw gradient) means that the program
found its way to the bottom of the hill and is convinced that it did its best job minimizing
the function. I think that (stopped by itmax) means that the program was forced to quit
by a hard coded limit to the number of loops through the �tting. So if you come across this
message, you should probably do the �t again with the currentvalues. I honestly don't know
enough about the levmar �tting algorithm to know what the other messages really mean. If
you need to know, you should go into the �tting algorithm's documentation and see what
you can �nd out.

The �tting algorithm also provides a covariance matrix that it �nds while �tting. I do now
know how it calculates this matrix or what it exactly what it means physically. Nevertheless,
I print it out after the �tting is done.

3Actually, the program calculates the residual function divided by the number of peaks. So it really
displays the residual per peak, which is a more useful quantity because it would not change if more peaks
were used in the �t
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Listing 11.3: Display of A Covariance Matrix
1 Covar iance Matrix
2 [[ 9.43e -04 -1.53e -04 5.36e -05 3.27e -03 -1.77e -03 3.64e -0 3 2.10e+00]
3 [ -1.53e -04 1.17e -03 -1.40e -04 -8.58e -03 3.91e -05 -2.02e - 04 -1.25e -01]
4 [ 5.36e -05 -1.40e -04 2.07e -04 1.38e -02 -1.45e -04 3.12e -04 1.78e -01]
5 [ 3.27e -03 -8.58e -03 1.38e -02 9.49e -01 -6.44e -03 1.40e -02 8.02e+00]
6 [ -1.77e -03 3.91e -05 -1.45e -04 -6.44e -03 4.01e -01 -8.42e - 01 -4.76e+02]
7 [ 3.64e -03 -2.02e -04 3.12e -04 1.40e -02 -8.42e -01 1.77e+00 9.99e+02]
8 [ 2.10e+00 -1.25e -01 1.78e -01 8.02e+00 -4.76e+02 9.99e+02 5.65e+05]]

The rows (from top to bottom) correspond to \xc", \ yc", \ d" \ E", \ alpha", \ beta", and
\ rotation ". The columns (from left to right) also correspond to \xc", \ yc", \ d" \ E",
\ alpha", \ beta", and \ rotation ". I think that the square root of the diagonal elements
of the covariance matrix are supposed to correspond to uncertainties, but I do not know
enough about the minimization algorithm to be really comfortable saying that these are the
true uncertainties in the �t parameters. Your mileage my vary. Anyway, I print out the root
of the diagonals. The printout by the program

Listing 11.4: Display of the root of the diagonals

1 Root of the diagonal of the covar iance matrix ...
2 xc : 0.0307145820046
3 yc : 0.0341970790239
4 d: 0.0143735880013
5 E: 0.97393322373
6 alpha : 0.633295666676
7 beta: 1.32940880588
8 rotat ion : 751.595873785

If you do not like the guess for the calibration parameters, you can always unto to the
previous calibration values before the �t using the \Previous Values " input.

11.4 The \ Number of Chi?" and \ Stddev?" Input

The calibration algorithm requires starting at the center and moving across the image in
constant � slices (see section 11.1 or �gure 11.2 for a graphical representation). The number
of these slices around the image that should be done is user selectable using the \Number Of
Chi?" input. The default value is 360. The more� slices that are used, the slower the �t
will be.

Section 11.2 describes how the program uses a parameter to determine how picky it should
be in allowing peaks that it �nds. Roughly, this parameter corresponds to how many times
larger the peak has to be then the background noise outside ofthe peak. This parameter
can be set using the \Stddev?" input. The default value is 5. The higher the value, the less
likely the program will be to �nd and use bad peaks but the morelikely it will be to ignore
valid good peaks.
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11.5 Work in �

Often times, one wishes to deal with the wavelength of the incoming beam of light instead
of the energy of the beam. Of course, the energy and wavelength are intemately related by
the formula

E = hc=� (11.2)

If you wish to work with wavelength in units of nanometers instead of energy in units of
electron volts, you can change the state of the program so that the program works with
wavelength instead of energy. To do so, you have to go into themenu bar and change the
radio select from \Work in eV" to \ Work in Lambda". Once you do that, the calibration
parameter input will be labeled� . Any number in that input will then be converted. After
the parameter is modi�ed during a �t, the program will put the wavelength value into the
input. Finally, when the calibration parameters are saved to a �le, the wavelength will saved
to the �le instead of the energy.

11.6 Fixing Calibration Parameters

When �tting calibration parameters, it is not always desirable to allow the program to
vary all of the calibration parameters. For example, the energy of the beam used during the
di�raction experiment might be already very well known already so there would be no reason
to calibrate the energy. If you wish to �x any of the calibration parameters values so that it
does not vary during a calibration �t, you can use the check boxes under the \Fixed?" label
to �x the parameter. When the corresponding check box is checked, the parameter will not
vary during the �t. When it is not checked, the parameter will vary during the �t. You can
not �x the pixel length and pixel height because they are always held �xed. This is because
these are never the short of thing that one would want to vary.They are some property of
the detector that is known in advance.

11.7 Displaying Constant Q Lines

After the program has been given a di�raction �le, a list of the constantQ lines, and some
calibration parameters, the program has a very useful feature where it can display on top
of the image the di�raction pattern that should show up for the particular Q lines and the
particular calibration parameters.

The \ Draw Q Lines?" button on the \ Calibration " tab enables this. Figure 11.3 shows
what the di�raction image looks like with the Q lines drawn on it.

Drawing these lines is actually very easy. For eachQ value, the program picks a lot of
� values. We know that each of theQ, � values is in the constantQ line so we can use the
calibration parameters to convert them tox, y values and connect all the pixel coordinates
to make the line.
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Figure 11.3: A di�rac-
tion image with constant
the Q lines displayed on
it.
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Constant Q lines can also be drawn on top of the caked data. This is described in
section 13.4. The color of theQ lines can be changed using the \Color " button next to the
\ Draw Q Lines?" button.

11.8 Displaying Constant � Q Lines

The program needs in addition to theQ values a range inQ to �nd the peaks. See section 11.2
for more details. Because the program has this range, it can also display the � Q range on
top of the image. This can be done with the \Draw dQ Lines?" button and the color of
these lines can be changed with the corresponding \Color " button. Figure 11.4 shows what
the di�raction image looks like with the � Q lines drawn on it.

Figure 11.4: A di�rac-
tion image with the con-
stant � Q lines displayed
upon it.

Constant � Q lines can also be drawn on top of the caked data. This is described in
section 13.4.

11.9 Displaying Peaks

Section 11.2 describes how the program has to �nd a bunch of peaks on the di�raction
image in order to perform the calibration. After the programhas found all the peaks, it can
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conveniently display them on top of the di�raction image. This can be done with the \Draw
Peaks?". The peaks will be displayed as crosses and the color of the peaks can be changed
with the corresponding \Color " button. Figure 11.5 shows what the di�raction image looks
like with the peaks drawn on it. This feature is useful because you can use it to see if the
program is actually �nding real peaks corresponding to di�raction maxima. If many of the
peaks that the program �nds do not correspond to di�raction maxima, it is less likely that
the program would do a good job calibrating the di�raction image.

Figure 11.5: A di�rac-
tion image with the
peaks displayed upon it.

Peaks can also be drawn on top of the caked data. This is described in section 13.4.

11.10 Masking Peaks

The general idea behind masking peaks is allow polygon masks(see chapter 12) to be used
as a way to forbit the program from using any peaks found within a certain region. So if a
polygon mask covers a certain area of the image, none of the peaks found within that area will
be used while calibrating. Also, none of the peaks will be displayed on top of the di�raction
image or cake image. An example of this is shown in �gure 11.6a. See section 11.9 for a
discussion of displaying peaks on a di�raction image. Figure 11.6b shows the same e�ect on
top of the corresponding caked plot. See chapter 13 for a discussion of caking. In particular,
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see section 13.5 for more information on displaying peaks ona caked image. This feature
was added in version 2.0.0.

11.11 Saving the Peak List

The program has a feature where it can generate a list of di�raction peaks that it �nds the
di�raction image (just like when it is calibrating) but then instead of calibrating the image,
the program saves out all of the peaks to a data �le. This can beuseful, for example, if you
need a list of pixel coordiantes where di�raction peaks are for some further data analysis.
The \ Make/Save Peak List" button can be used to save out the peak list. Just as in
calibrating, the program requires in advance for a di�raction �le to be loaded, for a standard
Q �le to be loaded, and for a guess at the calibration parameters to be in the inputs.

A typical peak list �le looks like4

Listing 11.5: A Peak List File,basicstyle=

1 # A list of peaks found in the di f f ract ion image.
2 # Calculated on Sun Apr 6 18:06:56 2008
3 # Cal ibrat ion data used to f ind peaks :
4 # x center : 1725.0000000 pixels
5 # y center : 1725.0000000 pixels
6 # distance : 122.5040000 mm
7 # energy : 12714.2388941 eV
8 # alpha : 0.0000000 degrees
9 # beta: 0.0000000 degrees

10 # rotat ion : 0.0000000 degrees
11 # pixel length : 100.0000000 microns
12 # pixel height : 100.0000000 microns
13 # x y RealQ FitQ chi width intensi ty 2 theta
14 2016.15 1724.44 1.511 1.50 0.11 0.0075 5564.32 13.36
15 2016.68 1719.33 1.51 1.50 1.11 0.0093 1662.72 13.39

First, the �le contains the calibration parameters used to generate the peaks. Then it has
a comment string describing each of the numbers in each of therows that follow. Each
row corresponds to a unique peak. The �rst two numbersx and y are the x and y pixel
coordinate corresponding to a location in the di�raction image of the peak. RealQ is the
Q value found in the Q list that is already known. FitQ is the Q value calculated from
the (x; y) coordinate using the calibration parameters.� is also calculated from the pixel
coordinate using the calibration parameters. Intensity isintensity value found in the data
at this peak. 2� is calculated at the (x; y) coordinate using the calibration parameters.

4I have modi�ed what a real �le looks like a bit. The numbers are really tab separated but I show them
space separated for brevity.
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11.12 Handling Calibration Data

There are inputs in the calibration tab of the program for input of the calibration parameters.
\ xc" is for the x center, \yc" is for the y center, \d" is for the distance, \E" (or \ � : ") is for
the energy or wavelength. The� , � , and R inputs are for the three angles. \pl " stands for
the pixel length and \ph" stands for the pixel height.

You can directly input calibration data using the inputs andonce the data is in the inputs
it can be used by the program to do the calibration (or the caking or anything else).

But there are a couple of other ways to deal with calibration data. You can load and save
calibration program from the program using the \Load From File" and \ Save To File"
buttons. This is nice because it can be used, for example, to save the data that was found
by calibration data for future reference. As you will see, the calibration data �les can handle
information about whether the parameters should be �xed (see section 11.6).

The format for a calibration data �le is pretty simple. Below is an example

Listing 11.6: Calibration Parameters
1 # Cal ibrat ion File
2 xc 1725.000000 0
3 yc 1725.000000 0
4 D 125.296000 0
5 E 12735.395772 0
6 alpha 0.000000 0
7 beta 0.000000 0
8 rotat ion 0.000000 0
9 pixelLength 100.000000

10 pixelHeight 100.000000

Comment lines beginning with a # and are ignored. Each of the parameters gets its own line.
Each parameter name is followed by some spaces or tabs and then the value. The value can
be followed by an optional second number which is either zeroor one. The second number
corresponds to whether or not the parameter should be �xed while �tting. One means �x
the parameter. Zero means let it very. If no number is given, the default is to not �x the
parameter.

Instead of energy, the wavelength of the incoming beam of light can be stored in a
calibration �le. The wavelength line would look like \wavelength 0.973540". When the
program is in wavelength mode, the program will save out calibration parameters with this
line instead of the one above. The program will load in a �le containing either no matter
what mode the program is in. It will do the conversion if it hasto do put the right value
into the input. See section 11.5.

11.13 Handling Q Data

Q data is always loaded into the program from �les.Q data can be loaded into the program
with the \ Q Data:" input on the calibration tab. You can either type in the �len ame of the

102



Q �le by hand and push the load button or click on the folder iconto the side and use the
�le selector to pick the �le that you want.

The Q data �le format is pretty simple. Below is an example

Listing 11.7: Lanthanum Hexaboride.dat
1 # This is Q Data for Lanthanum Hexabor ide
2 Q dQ
3 1.511543809 .05
4 2.137646823 .05
5 2.618102966 .05
6 3.023087619 .05
7 3.379873753 .05
8 3.702525225 .05
9 ...

Comment lines beginning with a # and are always ignored. The �rst line in the �le should
be of the form "Q dQ" or "Q delta Q" to specify that this is a list of Q values. The rest
of the �le should have Q values followed a �Q range. All Q values must be larger than 0.
None of theQ ranges can overlap. Instead of inputtingQ values, the program can inputD
values if the �rst line is instead "D dD" or "D delta D" The valu es should be given instead
in D space and the values will be converted using 10.21.

11.14 The \ Get From Header?" Input

Often times guesses at the experimental parameters are stored in the header data inside of
the di�raction image. The program can try to �nd these headercalibration parameters and
put them into the calibration parameters inputs in the program. This can be done with the
\ Get From Header" button.
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(a) A di�raction image with di�raction peaks and two
polygon masks displayed on top of it.

(b) A caked plot with di�raciton peaks and two poly-
gon masks displayed on top of it.

Figure 11.6: Polygon masks can be used to block out certain regions of the image. Whenever
a polygon mask is loaded into an image, none of the peaks foundin the mask's region will
be used while calibrating the image. Furthermore, none of the peaks within the masks will
be displayed on the di�raction image or caked plot.
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Chapter 12

Pixel Masking

When analyzing di�raction dat, not all of the pixels in an image should be used in the
analysis. In order to make the program ignore certain pixelswhen doing the analysis, this
program allows for two types of pixel masking: threshold masking and polygon masking.
You can apply either of these from the \Masking" tab. �gure 12.1 shows this tab.

12.1 Threshold Masking

The top half of the \Masking" tab is devoted to threshold masking. Threshold masking
allows all pixels, either above a certain intensity or belowa certain intensity, to be ignored
when doing the di�raction analysis. The \Do Greater Than Mask?" check box can be used
to apply a mask that will cause all pixels greater than a certain value to be ignored. The
\ (Pixel's Can't Be) Greater Than Mask " input can be used to specify the maximum
pixel value. Correspondingly, the \Do Less Than Mask" check box can be used to make the
program ignores all pixels below a certain value. The particular value can be speci�ed with
the \ Less Than Mask" input.

When you apply a threshold mask, the pixels over this threshold will all be colored
di�erently on the di�raction and cake image. You can specifywhat you want these masked to
be colored with the \Color " button next to the greater than and less then masks. Figure 12.2
shows what a di�raction image looks like when all pixels withintensity above 5000 are colored
green and all pixels below 30 are colored red.

When caked data is saved out to a �le, any of the pixels that arelarger than the greater
than mask are saved as -2. Any of the pixels smaller than the less than mask are saved as -3.
If you need to analyze caked data outside the program, this behaviour needs to be accounted
for.

When an intensity integration is saved to a �le, any of the toohigh or too low pixels are
simply ignored when calculating average intensity.
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Figure 12.1: The
pixel masking tab. It
allows for threshold
masking and polygon
masking.
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Figure 12.2: A di�raction
image with a greater than
mask and less than mask.
All pixels with intensity
greater than 5000 have
been colored green. All
pixels with intensity less
than 30 have been colored
red. Applying an intensity
mask can be a useful way
to see if a detector's pix-
els have been overloaded.
They can also be a used to
ensure that no overloaded
pixels are used in subse-
quent data analysis.
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12.2 Polygon Masking

Figure 12.3: Here are two
polygon masks that have
been applied to a di�rac-
tion image. One of them
blocks the beam stop.

Sometimes, large areas of a di�raction image should not be included in any data analysis.
For example, often a beam stop blocks part of the detector andthe pixels behind the beam
stop should be ignored. To allow for this sort of masking, theprogram has a polygon masking
feature. Polygons can be drawn around certain parts of the di�raction image and those parts
of the image will not be used in any subsequent analysis. Thisprogram can handle multiple
polygons at the same time.

So long as the \Do Polygon Mask?" check box is selected, the polygon masks will be
used when performing subsequent analysis. The polygons will be displayed on the di�raction
and cake image. Any pixel in the di�raction or cake image thatis inside one of the polygons
will have a di�erent color. An example of polygons on a di�raction image are shown in
�gure 12.3. The color of the polygon masks can be changed using using the \Color " button
next to the \ Do Polygon Mask?" check box. When caked data is saved out, any pixels
inside polygon masks will be given an intensity value of -4. During an intensity integration
masked pixels will be ignored.

A polygon mask can be added to the image by pushing the \Add Polygon" button on
the \ Masking" tab. This button will stay down when pushed. Pushing it putsthe program
in polygon drawing mode. In this mode, the di�raction image will behave di�erently. The

108



Figure 12.4: Here is the in-
terface for adding a new
polygon mask to the pro-
gram. This particular
mask will cover the beam
stop so that the beam stop
does not a�ect the inten-
sity integration.
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di�raction image can no longer be zoomed or panned. Instead,left clicking on the di�raction
image will make the program draw the polygon. The �rst left click adds the �rst vertex.
Each success left click add another vertex. The drawing can be �nished by right clicking (this
will also create a �nal vertex). Right clicking will make the program exit the drawing mode,
return to its original state, and add the polygon into the program. Multiple polygons can
be added using the \Add Polygon" button. Figure 12.4 shows the program when a polygon
is being drawn. Drawing a polygon can be aborted without saving the mask by unpushing
the \ Add Polygon" button.

Figure 12.5: Here is the
di�raction image window
as a polygon is about to be
removed. When mousing
over a polygon to remove
it, the program will display
a red border around it.

The \ Remove Polygon" button can be used to remove a polygon in the program. Like
the \ Add Polygon" button, this button will stay pushed and change the behavior of the
di�raction image. After the \ Remove Polygon" button is pushed, clicking over a particular
polygon will remove it. After the polygon is removed, the program will return to its normal
state. Figure 12.5 shows what the di�raction window looks like when a polygon is about to
be removed. The program can be returned to its normal state without removing a polygon
by unpushing the \Remove Polgyon" button.

The \ Clear Mask" button can be used to remove all the polygons at once. The \Save
Mask" button can be used to save all the polygons to a �le. A �le of polygons can be added
to the program using the \Load Mask" button. The �le for polygon �les is very simple. For
the polygons in �gure 12.3, the following �le would be saved:
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Listing 12.1: 'polygons.dat'
1 # Polygon (s) drawn on Thu Feb 07 00:00:21 2008
2 93.140587183 1098.06704199
3 208.013978042 1237.77792276
4 1052.48863517 1237.77792276
5 1213.93231962 1271.92947139
6 1248.08386825 1126.00921814
7 1095.95424252 1067.02017959
8 1064.90738013 1104.27641447
9 847.579343365 1122.9045319

10
11 332.201427619 737.923438212
12 633.355992844 902.471808902
13 729.601266267 709.981262058

Each line is an (x,y) coordinate for one of the nodes of a polygon. The coordinates are
separated by spaces. Each polygon is separated by a newline.Comment lines beginning
with # are ignored.

12.3 Masking Caked Plots

Any polygon mask or threshold mask will also show up on the caked plot. Polygons on the
di�raction image can look very distorted on caked plots. Figure 12.6 shows an example.
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(a) A rectangular polygon mask in the middle of a
di�raction image

(b) The same rectangular mask on a caked plot

Figure 12.6: An example of how a relatively simple shape on a di�raction image will can
look very di�erent on a caked plot.
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Chapter 13

Caking

13.1 The Caking Algorithm

A caked plot is like a radial (r vs � ) plot of the di�raction data as it would appear if it
were captured on an untitled detector. A radial plot will make circles of constantr become
straight lines. Caked plots are important because di�raction peaks will also be straight lines.
A caked plot is actually a plot ofQ vs � . Equation 10.19 shows thatQ is related by the sin
function to 2� and 2� is just the scattering angle of the di�raction peak. From equation 10.17,
2� is related to the radiusr by a tangent function. Although the relationship is not linear,
Q increase asr increases and thereforeQ is a similar quantity to r . � corresponds to the
angle radially around the center of the image. So a cake plot of Q and � is really analogous
to a radial plot.

Cakes plots are calculated with the following algorithm. The program must �rst bin Q
and � space. The user can specify the bin range and bin size with inputs. Alternately, the
code can try to pick a range that is large enough to encompass the whole region. Once the
bin size is speci�ed, the program has to �ll each bin an intensity value. Since each bin has
some particularQ and � value1 we can calculate the corresponding (x000; y000) pixel coordinate
for this Q and � value using equation 10.15 and 10.16. The intensity value for the pixel
coordinatex000and y000is the intensity that should be put in the bin. (x000; y000) is generally not
a whole number so a bilinear interpolation of the intensity around this coordinate is used to
get a best estimate.

In principle, the caking algorithm could be implemented di�erently. The algorithm cur-
rently runs a loop over each bin. One could alternately loop over all the pixels of di�raction
data. Each pixel has a particular (x000; y000) coordinate. Equations 10.9 and 10.11 could be
used to calculate theQ and � value for each pixel in the image, and each pixel could be put
into its corresponding bin. After doing this for all the pixels, we could average the intensity
in all the bins. This implementation does not necessarily put an intensity value into all the
bins. This could be overcome by applying the previous algorithm only to the bins for which

1Technically, each bin has aQ and � range. We will take the middle of the bin to be the particular Q
and � value for the bin.
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nothing was added. This method would in some ways be more accurate because each of the
pixels in the di�raction image would be used in the analysis whereas they are aren't all used
in the above algorithm. But the biggest downside of this alternate algorithm is that it is sub-
stantially slower because there are usually signi�cantly more pixels in the di�raction image
then bins used in a cake. For example, mar3450 data holds 3450� 3450 pixels while cakes
typically have a resolution of 1000� 1000. This alternative algorithm was not implemented
for this reason.

Caked data can be masked with pixel masks. Whenever the program �nds an intensity
value that should be masked (either because it is too large, too small, or in a polygon mask),
it �lls in that part of the caked array with a particular negat ive value. When the caked data
is displayed, these negative values are given special colors.

The program can perform a polarization correction of the caked data. The polarization
correction formula is

I = Im=P F (13.1)

P F = P(1 � (sin(2� ) sin(� � 90))2) + (1 � P)(1 � (sin(2� ) cos(� � 90))2) (13.2)

with Im the measured intensity. The 2� and � values correspond to the particular value
that is being corrected. All pixels have their intensity corrected by this formula before they
are put into a cake bin.

13.2 Caking with the Program

Figure 13.1 shows the \Caking" tab. This is where caking is done. The program can
only cake data after one or more di�raction �les has been loaded into the program and
after calibration values for the particular di�raction image are loaded. In order to cake, this
program needs to know a range inQ and � space that should be caked. This can be inputted
with the \ Q Lower?", \ Q Upper?" \ Chi Lower?", and \ Chi Upper?" inputs. The program
will also need to know how manyQ and � bins to create when caking data. This can be
inputted with the \ Number of Q?" and \ Number of Chi?" inputs. Once this is done, the
\ Do Cake" button will cake the data.

After the cake �nishes, the program will open a cake data window which displays the
cake data interactively. The cake data window acts just likethe di�raction data window so
everything in Chapter 9 carries over. The only real di�erence is that whenever the caked
data is zoomed into, the program will take the selected zoom range and put it into the inputs
on the cake tab and the recake the image. The caked data can be taken to the previous
zoom level either by right clicking on the caked plot or by pushing the \ Last Cake" button

13.3 AutoCake

The program has a convenience button \AutoCake". \ AutoCake" will guess a good range of
Q and � values, put them into the input, and then push the \Do Cake" button automatically.
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Figure 13.1: The
caking tab of the
program. This is
where caking is done.
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Figure 13.2: The cake data
window for the program.
This window will open up af-
ter the data is caked. This
window behaves exactly like
the di�raction data window.

This will create a cake without much work. The program will pick a range that puts every
pixel from the di�raction image into the cake. It will pick a bins sizes so that each pixel
of the displayed cake data will correspond to one bin. This will ensure that the cake looks
as sharp as the computer can draw it. After the display is resized, the number of bins will
change correspondingly. The next time \AutoCake" is pushed, the cake window will again
look sharp.

13.4 Displaying Q and � Q Lines

If a Q list has been loaded into the program, constantQ lines or � Q lines can be displayed on
top of the cake data. Remember that constantQ lines on the di�raction image are straight
vertical lines on the caked plot. The program will display constant Q lines or � Q lines on the
caked plot whenever they should be displayed on the di�raction image. See section 11.7 and
section 11.8 for a discussion of displaying constantQ lines on di�raction data. Figure 13.3
shows constantQ lines displayed on a caked plot and �gure 13.4 shows constant� Q lines
displayed on a caked plot.
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Figure 13.3: The caked data window
with constant Q lines drawn on top
of it.

Figure 13.4: The caked data window
with constant � Q lines drawn on top
of it.
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Figure 13.5: The caked data window
with di�raction peaks drawn on top
of it.

13.5 Displaying Peaks

Any peaks that the program �nds when performing a calibration can be displayed on top of
the caked data. The peaks will be displayed as crosses. Figure 13.5 shows peaks displayed on
a caked plot. Peaks will be displayed on the caked plot whenever they should be displayed
on the di�raction image. See section 11.9 for a discussion ofdisplaying peaks on di�raction
data. Being able to displayQ lines and peaks can be very useful for checking if a calibration
was done properly. Figure 13.6 illustrates this principle.

13.6 Polarization Correction

The program can apply a polarization correction to the cake.The \ Do Polarization
Correction? " check box can be used to apply a polarization and the polarization value
can be set with the \P?" input.

13.7 Working in 2�

Caked plots can have 2� instead of Q as one of the axis. This can be done by changing
the program to 2� mode by doing into the �le menu and selecting the \Work in 2theta "
option. When this is selected, all the names in the program will change fromQ to 2� . For
example, the program will have \2� Lower ", \2 � Upper", \ Number of 2� ". The program
will display the cake image with 2� as its axis. The \Work in Q" option in the �le menu
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(a) A bad calibration (b) A good calibration

Figure 13.6: displaying peaks and constantQ lines on top of the caked data can be used to
tell if the data is properly calibrated. If the calibration is good, all the peaks will cluster very
close to a particular value ofQ line and there will be no systematic variation of the di�raction
peak. If the calibration is bad, the di�raction peaks will have a systematic distortion around
some value ofQ. This can be used to see if the program is properly calibrating the data.

can be used to return the program to caking withQ as one of the axis. This feature was
introduces in version 2.0.0 of the program.

13.8 Saving Cake Images

You can save caked data out as one of many popular image formats. The program can save
caked images as \jpg ", \ gif ", \ eps", \ pdf ", \ bmp", \ png", or \ tiff ". When caked data is
saved as an image, it will be saved out with whatever threshold masks, polygon masks,Q
lines, � Q lines, and peaks were displayed over the caked data in the program.

13.9 Saving Cake Data

Caked data can also be saved as a plain text data �le. This can be done by pushing the
\ Save Data" button and selecting a destination. The format for caked �les is just a long
comment string followed by the data as rows of numbers. Here is an example:

Listing 13.1: 'cakeddata.dat'
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1 # Cake of : N :/ data / LaB6_14_02_56. mar3450
2 # Data Caked on Wed Mar 12 21:30:55 2008
3 # Cal ibrat ion data used to make the cake:
4 # x center : 1725.0000000 pixels
5 # y center : 1725.0000000 pixels
6 # distance : 125.2960000 mm
7 # energy : 12735.3957721 eV
8 # alpha : 0.0000000 degrees
9 # beta: 0.0000000 degrees

10 # rotat ion : 0.0000000 degrees
11 # pixel length : 100.0000000 microns
12 # pixel height : 100.0000000 microns
13 # A Polar izat ion correct ion was applied
14 # P = 0.500000
15 # A greater than mask was applied
16 # Greater than mask = 1000.000000
17 # A Less Than Mask was applied
18 # Less than mask = 10.000000
19 # Polygon mask(s) were applied
20 # Polygon (s) used in the analysis :
21 # 2400.10912343 1073.5706619
22 # 962.511627907 2282.88014311
23 # 2850.51520572 2572.86762075
24 #
25 # 1573.33631485 1215.47942755
26 # 1820.13416816 2893.70483005
27 # 2906.04472272 1573.33631485
28 # Cake range:
29 # Q Lower = 0.000000
30 # Q Upper = 6.726544
31 # Number of Q = 560.000000
32 # Q Step = 0.012012
33 # chi Lower = -180.000000
34 # chi Upper = 180.000000
35 # Number of Chi = 560.000000
36 # chi Step = 0.642857
37 # Note: pixels outside the di f f ract ion image are saved as -1
38 # Pixels greater than the greater than mask are saved as -2
39 # Pixels less than the less than mask are saved as -3
40 # Pixels inside of a polygon masks are saved as -4
41 # chi increased down. Q increases to the right

the comment string describes what state the program was in when the cake was done. It
�rst lists the name of the di�raction �le(s) that were caked. Next it lists the calibration
parameters used when caking the data. Then is the polarization correction, the greater than
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mask and the less than mask that were used. It has the pixel coordinates of any polygons
that were used when caking. It then lists the range of the cakeand the number of bins that
were used. The program sets the value of certain bins in the data to special values. Bins
that are outside of the di�raction image are saved as -1. Binsthat were masked because
they were too large are saved as -2. Bins that were masked because they were too small
are saved as -3. Bins that were inside a pixel mask are saved as-4. This is written in the
comment string.

The program tries to be smart about the comment string. If no masks were used, the
comment string instead contains lines like

Listing 13.2: 'Alternate Header'
1 # No greater than mask was applied
2 # No less than mask was applied
3 # No polygon masks were applied

If the program is working in 2� mode, the comment string will instead say something like

Listing 13.3: 'Another Alternate Header'
1 # 2 theta Lower = 0.000000
2 # 2 theta Upper = 62.814525
3 # number of 2 theta = 560.000000
4 # 2 theta Step = 0.112169

Then comes the data. As the header describes, each line in the�le is of constant � and
contains many numbers separated by spaces. Each column is ofconstant Q. � increases
down andQ increases to the right. The top left bin corresponds toQ lower and � upper.
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Chapter 14

Intensity Integration

14.1 The Integration Algorithm

An intensity integration is a plot of average intensity as a function either Q, 2� , or � . The
calibration values for the di�raction data must be known before the integration is done. A
range and bin size for the integration must be give. For example, a Q � I integration might
have a range from 2 to 5 with 100 bins.

The algorithm for performing the intensity integration is as follows: loop over every pixel
in the image. Add its intensity to a bin if it Q, 2� , or � value falls within the bin's range. We
need to know the calibration values because they are used to calculate Q, 2� and � from the
pixel's coordinates using using equations 10.9 10.11, 10.18, 10.17, and 10.19. After binning
all the pixel, the bins are then averaged.

This program can constrain the integration range. This means that you can perform,
for example, aQ integration of only those pixels with some particular� range. Or, you
can constrain your� integration to a particular Q range. This could be used, for example,
to perform a � integration of only one di�raction peak. The algorithm for performing the
constraint isn't di�erent. You just only bin intensity valu es which are allowed by by the
constraint.

The program can perform a polarization correction to the integration. The polarization
correction formula is

I = Im=P F (14.1)

P F = P(1 � (sin(2� ) sin(� � 90))2) + (1 � P)(1 � (sin(2� ) cos(� � 90))2) (14.2)

with Im the measured intensity. The 2� and � values correspond to the particular value
that is being corrected. If this option is selected, all pixels have their intensity corrected by
this formula before they are binned.
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14.2 Integrating with the Program

The program requires one or more di�raction images and calibration parameters to be
loaded into the program before an intensity integration canbe done. Figure 14.1 shows
the \ Integrate " tab. This is where integration is done. There are two sets ofinputs on the
tab. The inputs on the left is titled \ Q-I Integration " and can be used for performingQ
integration. The \ Q Lower?" and \ Q Upper?" inputs on the left can be used to specify an
integration range in Q. The number of bins inQ space can be speci�ed with the \Number
of Q?" input. The \ Integrate " button on the left can be used to perform aQ integration.

Figure 14.1: The in-
tegration tab. This is
where intensity inte-
gration is done.

The inputs on the right is titled \ Chi-I Integration " and can be used for performing
a � integration. The \ Q Lower?" and \ Q Upper?" inputs on the right can be used to
specify an integration range in� . The number of bins in� space can be speci�ed with the
\ Number of Chi?" input. The \ Integrate " button on the right can be used to perform�
integration.
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Figure 14.2: The integration window
that opens up after an intensity inte-
gration is performed.

Figure 14.3: The integration window
that opens up after you perform an
intensity integration.
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14.3 The Integration Window

After the program �nishes integrating, a line plot of the integrated data will be displayed
in a new window. Figure 14.2 shows the integration window displaying Q � I integrated
data and �gure 14.3 shows the window displaying� � I integrated data. This window has
a couple of nice features for interacting with the data:

� Zoom into the data{ left click on the plot and hold down on the mouse. When the
mouse is moved around, the program will create a resizing rectangle. When the mouse
is released, the program will zoom into the selected range.

� Zoom out of the data{ right click on the plot.

� Resize the window{ click on the bottom right corner of the window and drag. The
window will resize just like any other window and the plot will become larger or smaller.

� Read coordinates for a selected point{ when mousing over certain the plot, the selected
Q, � or 2� and intensity value will be displayed on the bottom of the window.

� Log Scaling{ the \ Log Scale?" check box will toggle whether to display a log scale
of the data.

14.4 Working in 2�

This program can integrate in 2� instead ofQ. This The \ Work in 2theta " option in the
menu bar can be used to change the way that integration is done. This option will make the
label on the left to say \2� -I Integration ". The inputs below will change to \2� Lower",
\2 � Upper", and \ Number of 2� ". The \ Integrate " button will then perform an integrate
in 2� . The di�raction window will display average intensity as a function of 2� . If there are
any values in the \Q Lower" or \ Q Upper", they will be convert from Q to 2� values when
the program switches. The \Work in Q" option in the menu bar can be used to change the
program back to working with Q. Any values in the \2� Lower?" or \2 � Upper?" will be
converted back.

14.5 AutoIntegrate

There is a convenience function called \AutoIntegrate " that is similar to the \ AutoCake"
button. \ AutoIntegrate " will try to pick a nice integration range and then do the integra-
tion. The AutoIntegrate button on the left will guess at a nice range ofQ (or 2� ) and then
do the Q (or 2� ) integration. It will always make the lower Q or 2� value 0 and the upper
value large enough to include all the data. It will set the number of Q or 2� to 200. The
\ AutoIntegrate " button on the right will guess a nice range of� and do the� integration.
It will always set \ Chi Lower" to -180, \ Chi Upper" to 180, and \Number of Chi" to 200.
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14.6 Constraining the Inputs

As was described in section 14.1, an integration of one parameter can be constrained by
another parameter. For example, aQ or 2� integration can be done only of values in a
particular � range. � integration can only be done of a particularQ or 2� range. Of course,
it would be pointless to constrainQ to a certain range of 2� or vice versa.

To constrain the integration using the program, there are two convenient \Constrain
With Range On Right?" and \ Constrain With Range On Left?" check boxes.

When \Constrain With Range On Right?" is selected, theQ or 2� integration being
done will be constrained in� by the chi range speci�ed by \Chi Lower" and \ Chi Upper".
When \Constrain With Range On Left?" is selected, the� integration will be constrained
by either the Q range speci�ed by \Q Lower?" and \ Q Upper?" or the 2� range speci�ed
by \2 � Lower?" and \2 � Upper?".

14.7 Masking

The program allows for masking of certain pixels while integrating. Masking of intensity
integrated data is done whenever the \Do Greater Than Mask?", \ Do Less Than Mask?",
or \ Do Polygon Mask?" check boxes are selected. Whenever the program �nds an intensity
value that should should be masked (either because it is too large, too small, or in a polygon
mask), the program will ignore the pixel and not bin it. Referto Chapter 12 for a discussion
of masking.

14.8 Saving Integrated Data

The intensity integrated data can be saved to a �le using the \Save Data" button. A typical
integration �le looks like:

Listing 14.1: 'A Cake Data File'
1 # Q vs I Intensi ty Integrat ion
2 # Intensi ty integrat ion of : C :/ data / LaB6_14_02_56. mar34 50
3 # Data Integrated on Fri Mar 21 17:59:16 2008
4 # Cal ibrat ion data used:
5 # x center : 1725.0000000 pixels
6 # y center : 1725.0000000 pixels
7 # distance : 125.2960000 mm
8 # energy : 12735.3957721 eV
9 # alpha : 0.0000000 degrees

10 # beta: 0.0000000 degrees
11 # rotat ion : 0.0000000 degrees
12 # pixel length : 100.0000000 microns
13 # pixel height : 100.0000000 microns
14 # A polar izat ion correct ion was applied
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15 # P = 1.000000
16 # A greater than mask was applied
17 # Greater than mask = 10000.000000 (All pixels above 10000.0 00000 were i
18 # A Less Than Mask was applied .
19 # Less than mask = 50.000000 (All pixels below 50.000000 were ignored )
20 # Polygon mask(s) were applied
21 # Polygon (s) used in the analysis :
22 # 647.844364937 1369.72808587
23 # 1449.93738819 3226.88193202
24 # 2535.84794275 1449.93738819
25 #
26 # 1258.66905188 641.674418605
27 # 1215.47942755 999.531305903
28 # 1505.46690519 1116.76028623
29 # 1653.54561717 777.413237925
30 # Integrat ion performed with a chi constraint
31 # chi constraint lower : 90.000000
32 # chi constraint upper : 270.000000
33 # Integrat ion Range:
34 # Q Lower = 0.000000
35 # Q Upper = 6.726544
36 # Number of Q = 200.000000
37 # Q Step = 0.033633
38 # Q Avg Intensi ty
39 0.016901 0.000000
40 0.050703 0.000000
41 0.084504 0.000000
42 0.118306 0.000000
43 0.152108 0.000000
44 0.185910 0.000000
45 ...

The header is a bunch of lines that begin with #. The header describes the state that the pro-
gram was in when the intensity integration was performed. The �st line describes what type
of integration was performed. For example, if a� � I integration was performed, the header
�le will say \ # Chi vs I Intensity Integration ". The header then contains the name(s)
of the di�raction �les that were integrated. The header contains the calibration parameters
that were used when integrating. The header contains information about any polarization
correction, greater or less than mask that was applied, polygon mask that was applied. It
describes any constrains on the integration and �nally the integration range and step size.
Following the header is the line \# Q Avg Intensity " (or \ # Chi Avg Intensity " or \ #
2theta Avg Intensity "). Following it is the data. Each line contains two numbers corre-
sponding to one bins. The �rst number is the middleQ (or � or 2� value) in the bin and
the second number is the average intensity.
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Chapter 15

Macros

This program is almost fully automatable with macros. Macros canb e used to perform data
analysis as quickly as possible. The program is capable of recording macros and running
macros. The macro �le format is simple enough that it is easy write or modify macro �les
by hand.

Figure 15.1: The
\ Macro" menu bar.
This is where macros
are recorded and run.

15.1 Record Macros

The easiest way to create a macro is to record it. A macro can berecorded by selecting the
\ Start Record Macro" option in the \ Macro" menu bar. Figure 15.1 shows the \Macro"
menu bar. After all of the steps that should be recoreded are �nished, pushing \Stop Record
Macro" will save the macro �le to a selectable �le.

15.2 Run Macros

The \ Run Saved Macro" option in the \ Macro" menu to run a macro �le. The program
will run all the steps in the macro �le and then return control of the program. This is how
analysis can be done with macro �les.
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15.3 The Macro File Format

A macro �le contains a list of commands which tell the programwhat to do. Each command
in the GUI is on its own line. The syntax for macro commands is pretty straightforward.
Macro commands are the text corresponding to the part of the GUI that does the command.
For example, to make the macro get the calibration data from the header of the image, the
macro command is \Get From Header". To �t the calibration data from within a macro,
the command is \Do Fit ".

Things get more interesting when the GUI item requires requires doing more then just
pushing a button. For example, to deselect the \Draw Q Data?" check box, the macro
needs to specify that the check box gets deselect instead of selected. For these, the macro
commands need to be followed by a second line with the particular. For this example, we
would write

Listing 15.1: 'Draw the Q Lines on the Display'

1 Draw Q Data?
2 Select
3 # Or , to not display them:
4 Draw Q Data?
5 Deselect

It is the same when numbers should be set. To change a calibration values, the macro would
look like:

Listing 15.2: 'Input a Number'

1 xc :
2 1752.3
3 beta:
4 5.23

These are treated just the same. The following macro commandwould save the cake as an
image:

Listing 15.3: 'Save the Caked Image'

1 Save Caked Image
2 C:/ data / cake_output. jpg

If you look on the �rst tab, there are three inputs at the top: \Get From Header:",
\ dark current: ", and \ Q data:". The macro command to load any of these is a little bit
ambiguous. When using the actual GUI, you would, at least in principle, type in the name
of a �le and then press load. But there is no reason to make the GUI so redundant. So to
load in any of these using a macro command, all you have to do isgive the name of the input
and then the �lename. It will automatically load the �le with out you explicitly giving the
\ load " line. So, for example, to load in theQ data, you would include the following lines:
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Listing 15.4: 'Load the Q Data'
1 Q Data:
2 C:/ data / q_data .dat

15.4 Looping Over Di�raction Data

To analyze a �le, the command is just

Listing 15.5: 'Load the Di�raction Data'
1 Data File :
2 C:/ data / f irst . mar3450
3 Get From Header
4 # ...

But macros �les also allow for an easier way to loop over many �les and perform the same
analysis on all of them. To loop over multiple di�raction images at once, you could simply
give more �les after the �rst one. The loop will end when one ofthe 3 things in the macro
�le happens: a subsequent line in the macro �le reads \END LOOP", more di�raction data is
loaded using the command \Data File: ", or the macro �le ends. For example, if we look
at this macro �le.

Listing 15.6: 'Loop Over Di�raction Data'
1 Data File :
2 C:/ data / f irst . mar3450 C:/ data / second . mar3450
3 Integrate Q Lower?
4 .25
5 Integrate Q-I
6 END_LOOP
7 Draw Q Lines?
8 Select
9 # ...

We see that it would get evaluated just like this macro �le:

Listing 15.7: 'An Equivalent Macro'
1 Data File :
2 C:/ data / f irst . mar3450
3 Integrate Q Lower?
4 .25
5 Integrate Q-I
6 Data File :
7 C:/ data / second . mar3450
8 Integrate Q Lower?
9 .25
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10 Integrate Q-I
11 Draw Q Lines?
12 Select
13 # ...

You can even give it whole directories. When you give it a directory to loop over, the program
will (non-recursively) look for all the di�raction �les in t hat directory and include them in
the list. For example, if the folder \C:/data/ " contains only the �le \ first.mar3450 "
and \second.mar3450", an equivalent way of looping over these �les would be to issue the
command

Listing 15.8: 'Load the Di�raction Data'

1 Data File :
2 C:/ data /
3 # ...

You can put as many folder and �les after a \Data File: " line as you wish. Just make sure
to put them all on the same line or the program will complain.

15.5 The PATHNAME and FILENAME Commands

Finally, there is a convenience markup which can help you make fancy macros. When-
ever you have loaded data in, you can refer to the part name of the current di�raction
�le that is loaded using the string \PATHNAME" and you can refer to the �le name it-
self using the string \FILENAME". So, in our previous example, if we had loaded the �le
\ C:/data/second file.mar3450 ", \ PATHNAME" would get chaned into \C:/data " and \ PATHNAME"
would get evaluated to \second file " without the extension. In e�ect, you can imagine
building back the full name from \PATHNAME" and \ FILENAME" using an equation line

C:/data/second file.mar3450 = FILENAME/PATHNAME.mar3450

These commands are useful because they allow you to loop overmany �les at once but still
save things in useful places and with useful names. It would be easy, for example, to save
the intensity data you calculate for each �le being looped over using the macro command:

Listing 15.9: 'Using the FILENAME and PATHNAME Markup'

1 Save Integrat ion Data
2 FILENAME / PATHNAME \_int . dat

This would save, for example, \C:/data/first.mar3450 "'s intensity data to \ C:/data/first int.dat ",
\ C:/data/second.mar3450 "'s intensity data to \ C:/data/second int.dat ", and the same
for all the others. This feature lets you have the macro to save each of the �les to the right
place and give it a useful name.
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15.6 Loops Over Multiple Images

We know from chapter 9 that you can load in multiple di�raction images and add them
together. But we have not yet talked about how this can be doneinside of a macro. The
syntax is pretty straight forward. We introduce a new macro command named \Multiple
Data Files " which signi�es that many �les should be loaded. To load in multiple �les
and have their intensities added, this command must be followed by a list of �lenames
enclosed within [ and ] brackets. Keeping with the same example above, we could load
in \ C:/data/first.mar3450 " and \ C:/data/second.mar3450 " and have their intensities
added using the command

Listing 15.10: 'Add the intensities'

1 Mult iple Data Files :
2 [C :/ data / f irst . mar3450 C:/ data / second . mar3450 ]
3 # ...

The program enforces that all of the �les are in the same folder. This is done so that that
the \ PATHNAME" variable remains meaningful when looping over multiple images.

You can then incorporate this into a loop in one of two ways. First, you can simply
put several of these bracketed lists into the macro and each of the lists will be analyzed
separately. For example,

Listing 15.11: 'Loop Over the Analysis'

1 Mult iple Data Files :
2 [C :/ f i rst . mar3450 C:/ second .mar3450 ] [C:/ third . mar345 0 C:/ fourth . mar34
3 # ...

This will separately loop over \first.mar3450 " and \ second.mar3450" added together and
then \ third.mar3450 " and \ fourth.mar3450 " added together. But this gets cumbersome.
Alternately, you can simply take all of the �les that you want to be added together and
analyzed and group them into subfolders. Each of the subfolders will contain only �les that
should be added together and analyzed. If you then give the macro the name of the folder
containing all these subfolders, it will loop over all the subfolders.

For example, suppose we created the folder \C:/data ". Inside of this folder is the sub-
folder \A" containing the �les \ first.mar3450 " and \ second.mar3450". Also inside of the
data folder is the subfolder \B" containing the �les \ third.mar3450 " and \ fourth.mar3450 ".
We could do the exact same data analysis as above by issuing the macro command with only
the data folder name.

Listing 15.12: 'Using the Folder Syntax'

1 Mult iple Data Files :
2 C:/ data
3 # ...
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You can also put as many folders and lists separated by [ and ] as you wish onto the line
and it will loop over all of them.

Since the macro function insists that all �les that are addedtogether are in the same
folder, the \PATHNAME" command will properly expand to the path that all of the �les that
were added together have. But since they all have di�erent �le names, the \FILENAME"
command will always be replaced by the string \MULTIPLEFILES" to avoid ambiguity.

15.7 The FOLDERPATH and FOLDERNAME com-
mands

To facilitate writing macros that load in and add together several di�raction images, the
program introduces two new macro commands. The �rst commandis \ FOLDERNAME" and
will always be replaced by the name of the folder containing the current di�raction �le (or
�les). Since the macro insists that all �les are loaded form the same Folder, this command is
unambiguous. Finally, you can use the command \FOLDERPATH". It will always be replaced
by the path leading up to the folder containing the �le. Therefore, we can now specify where
the current �le is by using the macro command

FILENAME/PATHNAME.mar3450

or the command
FOLDERPATH/FOLDERNAME/FILENAME.mar3450

Basically, this is useful because if you are adding togethermultiple �les, you can put them
all in a folder with an interesting name and then name the output �les something like
\ FOLDERNAMEint.dat " so that they are all given useful names. This is nice becauseit can,
without loss of generality, be incorporated into a loop. Finally, the \ FOLDERPATH" command
is useful because you can use it to output �les one directory up from where all the di�raction
data is stored.

15.8 Setting Colors in a Macro

There are several places in the program where you can pick thecolor of something using a
color selector. It is a little trickier to do. When you issue amacro command that wants to
know the color of something, you have to tell it what that color is. By far the easiest way
to �gure out exactly what the macro line should loop like is tosimply record a macro where
select the color that you want and then copy the macro lines into your �le.

But if you are curious exactly what the format for colors looks like, you can see that
picking a color will generally look like this:

Listing 15.13: 'Use the Folder Syntax'
1 Polygon Mask Color?
2 red
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But it is a bit tricky trying to �gure out exactly what colors w ill work. Technically, this
program will accept any color which tk will accept. The colors that tk will accept by name
are all described here:http://wiki.tcl.tk/16166 . But tk can also accept colors based
upon their RGB value. To specify a color by its RGB value, the color must be preceded by
a # and followed by the RGB values in hexadecimal. Each of the RGB values range from 0
to 255 in decimal or (00 to � in hexadecimal). For example, pure red would be speci�ed by
the color #�0000. So we could replace the macro command abovewith the identical

Listing 15.14: 'Use the Folder Syntax'
1 Polygon Mask Color?
2 # ff0000

15.9 Little Tidbits

� Any of the macro commands themselves are case insensitive. The command \GeT
fRoM hEaDeR" is just as valid as the command \gET fROM hEADER" and \ Get From
Header". You don't have to sweat it.

� White spaces at the beginning and end of the line are ignored.In the preceding
examples, the spaces separating macro commands from input values such as �le names
are there only to increase readability. You don't need them if you don't want.

� Any new lines in a macro �le are ignored.

� comment lines of the form \# A comment" are ignored.

� You don't have to worry about explicitly moving from tab to tab in the computer
program. The computer program will move to the right automatically before performs
the action.

� When you issue the macro command \E:" or \ E Fixed", the computer program will
automatically set the GUI to \ Work in eV". If you issue the command or \lambda:" or
\ lambda fixed: " then the comptuer program will set the GUI to \Work in Lambda".
You can also explicitly set the GUI to either mode using the command \Work in eV"
or \ Work in Lambda".

15.10 Macro Commands

Below is a table describing all of the macro command and exactly what they do.
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Table 15.1: Macro Commands

Command Followed By E�ect
Program State Macro Commands

Work In eV None Change the state of the program so that
the energy calibration parameter is in-
putted in units of electron volts. This
is called theeV mode of the program.

Work in Lambda None Change the state of the program so that
the energy calibration parameter is in-
putted instead as a wavelength in units
of angstroms. The conversion is done
using the formula E = hc=� . This is
called the � mode of the program.

Work in 2theta None Change the state of the program so
that caking and intensity integration
are done of the variable 2� .

Work in Q None Change the state of the program so
that caking and intensity integration
are done of the variableQ.

Calibration Values
Data File: Files & Directories Loops over loading in each �le.
Multiple Data
Files"

Files & Directories Loops over loading several di�raction
�les and adding them together.

Dark Current: Filename Loads in the Dark Current.
Q Data: Filename Load in the Q data.
Standard Q q data Loads in one of the standardQ �les.

This command should be followed by
the name of the standard Q �le as it is
displayed by the program in the menu
bar.

Get From Header: None Sets the calibration data to the value
stored in the image header.

Load From File: Filename Loads a calibration data �le.
Previous Values None Loads the previously stored calibration

values.
Save To File Filename Saves the calibration data to a �le.
xc: Number Sets thex center.
xc Fixed: Select or Deselect Sets whether or not to �x the x center

while doing the �t.
yc: Number Set the y center.

Continued on next page: : :
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Table 15.1 { continued from previous page
Command Followed By E�ect

yc Fixed: Select or Deselect Sets whether or not to �x the y center
while doing the �t.

d: Number Set the distance from the sample to the
detector.

d Fixed: Select or Deselect Sets whether or not to �x the distance
while doing the �t.

E: Number Sets the energy. If this command is run
while the program is in � mode, the
program will switch to eV mode.

E Fixed: Select or Deselect Sets whether or not to �x the energy
while doing the �t. If this command is
run while the program is in� mode, the
program will switch to eV mode.

lambda: Number Sets the wavelength. If this command
is run while the program is ineV mode,
the program will switch to � mode.

lambda Fixed: Select or Deselect Sets whether or not to �x the wave-
length while doing the �t. If this com-
mand is run while the program is in
eV mode, the program will switch to�
mode.

alpha: Number Sets the� angle.
alpha Fixed: Select or Deselect Sets whether or not to �x the � angle

while doing the �t.
beta: Number Sets the� angle.
beta Fixed: Select or Deselect Sets whether or not to �x the � angle

while doing the �t.
R: Number Sets the rotation angle.
R Fixed: Select or Deselect Sets whether or not to �x the rotation

angle while doing the �t.
pl Number The pixel length of the image. This is

the width of one pixel (in microns).
ph Number The pixel height of the image. This is

the height of one pixel (in microns).
Draw Q Lines? Select or Deselect Sets wether or not to draw constantQ

lines on the screen.
Draw Q Lines
Color?

color Sets the color of the constantQ lines
that are displayed on top of the di�rac-
tion data and the caked data.

Continued on next page: : :
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Table 15.1 { continued from previous page
Command Followed By E�ect

Draw dQ Lines? Select or Deselect Draw the delta Q lines on the di�rac-
tion image.

Draw dQ Lines
Color?

color Change the color of the deltaQ lines
that are displayed on top of the di�rac-
tion data and the caked data.

Draw Peaks? Select or Deselect Display the �t peaks on the di�raction
and cake image.

Draw Peaks Color? color Change the color of the peaks that are
displayed on top of the di�raction data
and the caked data.

Update None Update the di�raction image.
Save Calibration Filename Saves the current calibration values in

the GUI as plaintext ASCII to a �le.
Do Fit None Fit the calibration values to a loaded

di�raction image.
Make/Save Peak
List

Filename Creates a peak list just as happens
when doing the �t, but instead of acu-
tally doing the �t it saves the peaks as
an ASCII �le for later use.

Use Old Peak List
(if possible)?

Select or Deselect Uses the previously found peak list
again when doing the �t.

Fit Number of Chi? Number The number of � slices around the
di�raction image to pick and use when
doing the calibration.

Stddev Number The � threshold for allowing a peak.
Di�raction Display Options

Diffraction Data
Colormaps

A color map name Select the color map to use for the
di�raction image.

Diffraction Data
Invert?

Select or Deselect Invert the color map that is being used
to display the di�raction data.

Diffraction Data
Log Scale?

Select or Deselect Take the log of all the data points be-
fore displaying them.

Diffraction Data
Low?

Number from 0 to 1 The normalized intensity value which
will be scaled to %0 of the image bright-
ness when displaying the di�raction im-
age.

Diffraction Data
Hi?

Number from 0 to 1 The normalized intensity value which
will be scaled to %100 of the image
brightness when displaying the di�rac-
tion image.

Continued on next page: : :
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Table 15.1 { continued from previous page
Command Followed By E�ect

Save Diffraction
Image

Filename Save the di�raction image to a �le (pos-
sibly including Q lines and peaks.

Masking Macro Commands
Do Less Than Mask? Select or Deselect Sets whether or not to apply a less than

mask to the di�raction data.
(Pixels Can't Be)
Less Than Mask:

Number Sets the less than mask.

Less Than Mask
Color?

color Sets the color that all the less than
masked pixels are displayed as on the
di�raction image and caked image.

Do Greater Than
Mask?

Select or Deselect Sets whether or not to apply a greater
than mask to the di�raction data.

(Pixels Can't Be)
Greater Than Mask:

Number Sets the greater than mask.

Greater Than Mask
Color?

color Sets the color that all the greater than
masked pixels are displayed as on the
di�raction image and caked image.

Do Polygon Mask? Select or Deselect Sets whether or not to apply polygon
masks to the di�raction data.

Polygon Mask
Color?

color Sets the color that all polygon masked
pixels should be displayed as on the
di�raction image and the cake image.

Save Mask Filename Saves all currently loaded or drawn
polygons as plain text ASCII to a �le.

Load Mask Filename Loads into the program from some �le
one or more polygons.

Clear Mask None Removes any polygon masks that are
in the program.

Cake Macro Commands
AutoCake None Make the computer pick a niceQ and

� range and Cake the data.
Cake Q Lower? Number The lowerQ value in the range ofQ and

� to use when caking. If this command
is run while the program is in 2� mode,
the program will switch to Q mode.

Continued on next page: : :
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Table 15.1 { continued from previous page
Command Followed By E�ect

Cake Q Upper? Number The upper Q value in the range ofQ
and � to use when caking. of the caked
data. If this command is run while the
program is in 2� mode, the program
will switch to Q mode.

Cake Number Of Q? Number The number ofQ bins to use while cak-
ing the data. If this command is run
while the program is in 2� mode, the
program will switch to Q mode.

Cake 2theta Lower? Number The lower 2� value in the range of 2�
and � to use when caking. If this com-
mand is run while the program is in
Q mode, the program will switch to 2�
mode.

Cake 2theta Upper? Number The upper 2� value in the range of 2�
and � to use when caking. If this com-
mand is run while the program is in
Q mode, the program will switch to 2�
mode.

Cake Number Of
2theta?

Number The number of 2� bins to use while cak-
ing the data. If this command is run
while the program is in Q mode, the
program will switch to 2� mode.

Cake Chi Lower? Number The lower � value of the caked data.
Cake Chi Upper? Number The upper � value of the caked data.
Cake Number Of
Chi?

Number The number of� bins to use while cak-
ing the data.

Do Cake None Performs a cake of the data and dis-
plays that caked data in the cake win-
dow.

Last Cake None Go back to the previous cake values.
Save Caked Image Filename Saves the cake as a popular image for-

mat. The image will be saved as the
input �lename and the extension of the
�lename should tell the program what
format to save the image as.

Save Caked Data Filename Saves the cake as ASCII data with a
verbose header.

Continued on next page: : :
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Table 15.1 { continued from previous page
Command Followed By E�ect

Cake Do
Polarization
Correction?

Select or Deselect Sets whether or not to use a polariza-
tion correction when caking the data.

Cake P? Number from 0 to 1 Sets the value of the polarization cor-
rection to use when caking the data.

Cake Display Options
Cake Data
Colormaps:

Color map Sets the color map to use when display-
ing the caked data.

Cake Data Invert? Select or Deselect Sets whether or not to invert the color
map when displaying the caked data.

Cake Data Log
Scale?

Select or Deselect Sets whether or not to use a log scale
when applying the color map to the
caked data.

Cake Data Low? Number from 0 to 1 The normalized intensity value which
will be scaled to %0 of the image bright-
ness when displaying the caked data.

Cake Data Hi? Number from 0 to 1 The normalized intensity value which
will be scaled to %100 of the image
brightness when displaying the caked
data.

Intensity Integration Macro Commands
Integrate Q Lower? Number The lower Q value to use when per-

forming an intensity integration. If the
command is run when program is in
2� mode, the program will switch toQ
mode.

Integrate Q Upper? Number The upper Q value to use when per-
forming an intensity integration. If the
command is run when program is in
2� mode, the program will switch toQ
mode.

Integrate Number
Of Q?

Number The number ofQ bins to use when per-
forming an intensity integration. If the
command is run when program is in
2� mode, the program will switch toQ
mode.

Continued on next page: : :
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Table 15.1 { continued from previous page
Command Followed By E�ect

Integrate 2theta
Lower?

Number The lower 2� value to use when per-
forming an intensity integration. If the
command is run when program is inQ
mode, the program will switch to 2�
mode.

Integrate 2theta
Upper?

Number The upper 2� value to use when per-
forming an intensity integration. If the
command is run when program is inQ
mode, the program will switch to 2�
mode.

Integrate Number
Of 2theta?

Number The number of 2� bins to use when per-
forming an intensity integration. If the
command is run when program is inQ
mode, the program will switch to 2�
mode.

Integrate Chi
Lower?

Number The lower � value to use when perform-
ing an intensity integration.

Integrate Chi
Upper?

Number The upper � value to use when per-
forming an intensity integration.

Integrate Number
Of Chi?

Number The number of� bins to use when per-
forming an intensity integration.

Integrate Q-I None Performs a Q � I integration of the
di�raction data. If the command is run
when the program is in 2� mode, the
program will switch to Q mode.

AutoIntegrate Q-I None Picks a good range ofQ values and then
does the same thing as theIntegrate
Q-I command.

Integrate 2theta-I None Performs a 2� � I integration of the
di�raction data. If the command is run
when the program is inQ mode, the
program will switch to 2� mode.

AutoIntegrate
2theta-I

None Picks a good range of 2� values and
then does the same thing as the
Integrate 2theta-I command.

Integrate chi-I None Performs a � � I integration of the
di�raction data.

AutoIntegrate
chi-I

None Picks a good range of� values and then
does the same thing as theIntegrate
chi-I command.

Continued on next page: : :
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Table 15.1 { continued from previous page
Command Followed By E�ect

Save Integration
Data

Filename Saves out the intensity integrated data
as two column plain text ASCII with
the given �lename.

Constrain With
Range On Right?

Select or Deselect Sets whether or not to apply a con-
straint to the Q or 2� vs. I integration
so that the integration is only done of
pixels who's� value is within the � in-
tegration range.

Constrain With
Range On Left?

Select or Deselect Sets whether or not to apply a con-
straint to the � vs I integration so that
the integration is only done of pixels
who's Q (or 2� ) value is within the Q
(or 2� ) integration range.

Integrate Do
Polarization
Correction?

Select or Deselect Sets whether or not to use a polariza-
tion correction when performing an in-
tensity integration.

Integrate P? Number form 0 to 1 sets the value of the polarization cor-
rection to use when performing an in-
tensity integration.

Integration Data
Log Scale?

Select or Deselect Sets whether or not to use a log scale
when displaying the di�raction data.

15.11 What You Can't Do With Macros

Just to be clear:

� There is no way with a macro to zoom into the di�raction data, the cake data, or the
intensity integrated data

� You can't draw individual polygon masks and you can't removeindividual polygon
masks. All you can do is load in polygon's from �le and save allthe current polygons
to a �le.

� When you load in multiple images at once by giving a �le name, it will only load in
images from the �le with known extensions (ie .mar2300, .mar3450, .mccd, .ti�). So
give your �les proper extensions before running macros.
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Chapter 16

Software Licensing

This program is released under the GNU General Public License (GPL) version 2. The
license can e found athttp://www.gnu.org/licenses/old-licenses/gpl-2.0.ht ml. For
the most part, you are free to use and distribute this software. You are free to make any
modi�cations to the code under the condition that any modi�cations are clearly stated and
that the modi�cates are are released under the GPL version 2.

This software manual is also licensed under the GPL. This is abit unconvential. I decided
to do so after reading several discussions online. Following Nathanael Nerode's articleWhy
You Shouldn't Use the GNU FDL, I include in this paper the clause \for the purpose of
applying the GPL to this document, I consider `source code' to refer to the texinfo source
and `object code' to refer to the generated info, tex, dvi, [pdf] and postscript �les."[9]

This program uses the software package levmar for performing Levenberg-Marquardt
nonlinear least squares minimization. It is released underthe GPL. That package can be
found at http://www.ics.forth.gr/ ~lourakis/levmar/ .[6]

This program uses the function getpck() from the CCP4 package Di�ractionImage to
uncompress Mar data. It written by Dr. Claudio Klein.[4] This prgoram also uses the �le
marccd header.h form the Di�ractionImage packate. It released under the GPL and can be
found at http://www.ccp4.ac.uk/ccp4bin/viewcvs/ccp4/lib/Diff ractionImage/ .[2]

This program uses the EdfFile library (EdfFile.py) for reading and writing �les of the
ESRF Data Format. It is is part of the PyMCA library and is licensed under the GNU GPL
version 2.[12]

This program also uses W. Randolph Frankin's pnpoly() function for performing a
point inclusion in polygon test. This code can be found athttp://www.ecse.rpi.edu/
Homepages/wrf/Research/Short_Notes/pnpoly.html We are in compliance with his soft-
ware license which is reproduced below[3]:

Copyright (c) 1970-2003, Wm. Randolph Franklin
Permission is hereby granted, free of charge, to any person obtaining a copy of

this software and associated documentation �les (the \Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
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and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimers. Redistributions in binary form must
reproduce the above copyright notice in the documentation and/or other materials
provided with the distribution. The name of W. Randolph Franklin may not be
used to endorse or promote products derived from this Software without speci�c
prior written permission. THE SOFTWARE IS PROVIDED \AS IS", WITH-
OUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LI-
ABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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Plan Exams
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Chapter 17

Comprehensive Exam, part 1 -
Covers: basic physics, special
relativity, classical mechanics

17.1 Problem

\A solid spherical ball of uniform mass density (e.g., a poolball) rolls without
slipping down a ramp which makes angle� with the horizontal. (a) What is its
translational acceleration down the ramp? (b) If the coe�cient of friction between
the ball and the surface is� = 0:1, for what value of� will the ball slip rather
than roll without slipping?" { Travis Norsen

W

N

Ff
r

�

Figure 17.1: The Ramp.

Figure 17.1 shows a free body diagram of this situation. Since we are dealing with a pool
ball, I CM = 2

5mr 2. I will calculate the torque about the contact point betweenthe ball and
the ground.

� =
X

r � F : (17.1)
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About this point, the only force applying a torque is the weight force:

� = rmg sin�: (17.2)

We can use the parallel axis theorem to calculate the moment of inertia of the ball about
the contact point:

I = 2
5mr 2 + mr 2 = 7

5mr 2 (17.3)

The linear acceleration is related to the angular acceleration of the ball about the contact
point by a = r� . We can use� = I� to calculate a:

I� = 7
5mr 2 �

a
r

= rmg sin�: (17.4)

We get
a = 5

7gsin� (17.5)

To �gure out part (b), we can apply F = ma to our free body diagram. We �rst do the
direction parallel to the ramp:

ma = mg sin� � Ff (17.6)

We know that the ball will just have slipped (or be about to slip) when the force of friction
just counteracts the downward pull of gravity anda = 0:

Ff = mg sin�: (17.7)

Doing the direction perpendicular to the ramp gets us:

N = mg cos� (17.8)

Since
Ff � �N; (17.9)

we know that
mg sin� � �mg cos�: (17.10)

Or,
tan � � �: (17.11)

The largest value of� is
tan � = �: (17.12)

17.2 Problem

\A planet orbits the sun under the inuence of the gravitational force

F =
GMm

r 2
(17.13)
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Suppose the planet has orbital angular momentumL. Write down an expression
for the e�ective potential energy (i.e., the gravitationalpotential energy plus the
term from the kinetic energy associated with the angular motion), and �nd the
value of r (call it R) for which the e�ective potential is minimized. What does
it mean physically if r (t) = R? What is the period of the orbit? Now consider
small oscillations ofr about R. Approximate the e�ective potential nearr = R
as a parabola, and �nd the resulting period of small oscillations. Sketch the shape
of a not-quite-circular orbit. Is it what you expect?"{ Travis Norsen

The potential of the system is

U(r ) = �
k
r

(17.14)

With k = GMm. We can write the total energy (or Hamiltonial) of the systemas

H = 1
2mjr m j2 + 1

2M jr M j2 + U(jr m � r M j) (17.15)

If we let r = r m � r M and change to a coordinate system where the center of the system is
the center of mass, than

mr m + M r M = 0: (17.16)

From this, it follows that

r m =
M

m + M
r (17.17)

r M = �
m

m + M
r : (17.18)

Plug these back into equation 17.15 gets us

H = 1
2 � j _r j2 + U(r ): (17.19)

With � = mM=(m + M ). This is the equation of just one particle with mass� in the same
potential. We can treat this two body system as though it werea one body system where
the one particle has the reduced mass. Writing_r in spherical coordinates gets us

_r = _r r̂ + r _� �̂ + r sin� _� �̂: (17.20)

Since we are dealing with a central force, we can without lossof generality assume that all
motion takes place in a plane such that� = 0 and so that there is no�̂ component to the
velocity. When we do so, we get

_r = _r r̂ + r _� �̂ (17.21)

Our Hamiltonian becomes

H = 1
2 � v2 + U(r ) = 1

2 � ( _r 2 + r 2 _� 2) + U(r ): (17.22)
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Since angular momentum is conserved:

L = � r � v = � = �r 2 _� �̂ = L �̂ (17.23)

where in the last step we used equation17.21. Since� = 0, we have � = constant as is
necessary for angular momentum to be conserved. Thus,

L = �r 2 _�: (17.24)

Plug this into equation 17.22 get us

H = 1
2 � _r 2 +

�
L2

2�r 2
+ U(r )

�
(17.25)

This is the equation of a particle in one dimensions in the e�ective potential

V e� =
L2

2�r 2
+ U(r ) = �

k
r0

+
L2

2�r 2
(17.26)

The potential is minimized at r0 when

dVe�

dr

�
�
�
r 0

= 0 (17.27)

Or,
k
r 2

0
�

L2

�r 3
0

= 0 (17.28)

so

r0 =
L2

k�
: (17.29)

When the potential is at a minimum, the particle experience no radial force. This means
that the particle undergoes uniform circular motion.

Next, we can calculate the velocity using equation 17.24. Since v = _�r , we have

L = �r 2
0

_� = �r 0v (17.30)

Or,

v =
L

�r 0
=

k
L

(17.31)

The period is

T =
2�r 0

v
=

2�L 3

k2�
(17.32)

We can Taylor expandV(r ) around r0. This will be a good approximation for radii nearr0.
First:

V (r0) = � k
�

�k
L2

�
+

L2

2�

�
�k
L2

� 2

= �
1
2

�k 2

L2
(17.33)

152



Next:
d2V(r0)

dr2
= �

2k
r 3

0
+

3L2

�r 4
0

=
k4� 3

L6
(17.34)

Thus:

V e� (r ) �
�k 2

2L2
+

k4� 3

2L6
� r 2 (17.35)

with � r = r � r0. We know that

F = � •r = � �• r = �
dVe�

dr
= �

dVe�

d(� r )
= �

k4� 2

L6
� r (17.36)

We can solve for � r gets

� r = A sin
�

k2�
L3

t
�

(17.37)

This has a period of

T = 2�
L3

k2�
: (17.38)

This is exactly the same as equation 17.32, the period of orbit. When we plot r = r0 + � r ,
the perturbed potential, the trajectory looks something like my diagram in �gure 17.2. This
trajectory looks like an ellipse, just as expected.

Sun

1AU

r

Figure 17.2: A diagram of the
path of the perturbed orbit.
Note that it roughly looks like a
very circular ellipse with the sun
at one focii.

17.3 Problem

\Alice and Bob are at opposite ends of a spaceship whose rest length L = 20cs
(i.e., twenty light seconds). They have previously synchronized their watches.
When her watch reads noon, Alice rolls a ball to the right, toward Bob, at speed
u = 4=5c. The ball moves at constant speed until Bob catches it. The question is:
what does Bobs watch read at the moment he catches the ball? The trick is: you
have to answer by working it out entirely from the frame of reference of Charlie,
for whom the spaceship is moving to the right at speedv = 3=5c. (Hint: what
does Bobs watch read when Alice rolls the ball? How long does it take the ball to
get to him?)" { Travis Norsen
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t

L

u

C

BA

Event 1

Event 2

t = 0

t

t = 0

� v

Figure 17.3: A space time diagram of the reference frame where the rocket is at rest

Figure 17.3 shows a space time diagram of this situation as viewed from the rocket rest
frame. We will call this the unprimed reference frame. The problem is easy to solve in this
frame. Alice's and Bob's clock are synchronized in this frame. If the ball leaves Alice at
t = 0, it will travel a distance L at velocity u at arrive at Bob at a time

t = l=u (17.39)

Using your numbers, we see thatt = 25s from which it follows that Bob's clock will read
25s after 12 o'clock (which I am callingt = 0. We can analyze this whole situation instead

t0

L0

u0

C BA

Event 1

Event 2

t0 = 0; t = 0 t0 = 0; t = � Lv=c2

t0; t
v

v

Figure 17.4: A space time diagram of the reference frame where the rocket is moving to the
right with velocity v

from a reference frame where Charlie is at rest. A space time diagram for this situation is
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shown in �gure 17.4. This will be the primed reference frame.The distance between Alice
and Bob will be contracted

L0 = L
p

1 � v2=c2: (17.40)

Remember thatmoving meter sticks shrink. Also, Bob's clock will read a time earlier than
Alice's clock. I think the saying is leading clocks lag. According to Charlie, When Alice's
clock readst = 0 Bob's clock will will say

t = �
Lv
c2

: (17.41)

Finally, the velocity of the ball, as measured from Charlie's frame has to be corrected.
The relationship between the velocities is calculated using the relativistic velocity addition
formula

u0 =
u + v

1 + uv=c2
: (17.42)

We will call the time interval between Bob's clock when the ball leaves Alice and when it
arriving at Bob as measured in Charlie's reference frame ast0. We can calculate it by setting
the position of the ball equal to the position of Bob and solving for time:

u0t0 = L0+ vt0 (17.43)
�

u + v
1 + uv=c2

�
t0 = L

p
1 � v2=c2 + vt0 (17.44)

t0 =
L
u

(1 + uv=c2)
p

1 � v2=c2
(17.45)

We will call this same time interval as measured by Bob's clock t. Bob's clock is moving
slow becauseMoving clocks run slow. The reason why we know that Bob's clock is the one
that is moving in this situation is because whatt is a time interval between is Bob's clock
when the ball leaves Alice (as viewed in Charlie's frame) andBob's clock when the ball gets
to Bob. Since Bob is present at both these events, he measuresthe proper time interval
between these two events. We can thus use the formula

�(proper) = �(improper)
p

1 � v2=c2 (17.46)

to show that

t = t0
p

1 � v2=c2 (17.47)

t =
L
u

�
1 +

uv
c2

�
(17.48)

If Bob's clock initially reads -Lv=c and the time interval is t, the time that Bob's clock will
reads when the ball gets to him is

�
Lv
c2

+
L
u

�
1 +

uv
c2

�
=

L
u

(17.49)

This is just what we need!
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17.4 Problem

\The point of suspension of a pendulum (massm, length L) is allowed to move
in the horizontal direction. It (the point of suspension) isconnected to a spring
which exerts a restoring forceF = kx. (a) Use the coordinatesx (the displace-
ment of the point of support) and� (the angular displacement of the pendulum bob
from vertical) to write the Lagrangian and the equations of motion. (b) Linearize
the equations of motion by assuming small oscillations; what length would an or-
dinary simple pendulum need to have in order to oscillate at the same frequency
as the one here?"{ Travis Norsen

Figure 17.5: A diagram of the
physical setup.

�

x

Ljy0j

x0

If we call (x0; y0) the spacial coordinate of pendulum bob, we can write these coordinates
as

x0 = x + L sin� (17.50)

y0 = � L cos� (17.51)

where x is the displacement of the spring and� is the angle swept out by the spring (see
�gure 17.5). We can write the Lagrangian as:

L = T � U (17.52)

= 1
2m( _x02 + _y02) � mgy0� 1

2x2 (17.53)

= 1
2m( _x2 + 2L _x _� cos� + L2 _� 2) + mgL cos� � 1

2kx2 (17.54)

The equations of motion are

@L
@�

�
d
dt

�
@L

@_�

�
= 0 (17.55)

@L
@x

�
d
dt

�
@L
@_x

�
= 0 (17.56)
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Plugging into the �rst equation gets

� mL _x _� sin� � mgL sin� �
d
dt

�
mL _x cos� + mL 2 _�

�
= 0: (17.57)

This simpli�es to

�
g
L

sin� �
•x
L

cos� � •� = 0: (17.58)

Note that this reduces whenx = 0 to the equation of state for a regular pendulum. Plugging
into the second equation gets

� kx �
d
dt

�
m _x + mL _� cos�

�
= 0: (17.59)

This becomes
� kx � m•x � mL •� cos� + mL _� 2 sin� = 0: (17.60)

This equation reduces when� = 0 to the equation of state for a regular spring. We can
take a small angle limit by letting cos� ! 1 and sin� ! � . When we do this, our equations
become

�
g
L

� �
•x
L

� •� = 0 (17.61)

�
k
m

x � L •� + L _� 2� � •x = 0 (17.62)

It is not at all clear to me what I am supposed to do to these equations to make the angle
dependence took like a simple harmonic oscillator, so I am not sure now to �gure out the
frequency of oscillations.. . .

17.5 Problem

\A bucket full of water rotates at uniform angular velocity! . It is near the
surface of the earth, so there's a uniform downward �eldg. What shape does the
surface of the water make? Be as speci�c as you can"{ Travis Norsen

We can assume that the bucket has been rotating for a su�ciently long time that the
water will all be rotating along with the bucket at constant angular velocity. We can also
assume that the system has been rotating long enough that it has come to equilibrium.
Figure 17.6 shows a free body diagram for a small chunk of water on the very surface of the
bucket. It experiences two forces: gravity and a normal force from the rest of the water. We
know that the particle is not moving up or down so

X
Fy = 0: (17.63)

We know that it is experiencing uniform circular motion, so
X

Fx = mr! 2: (17.64)
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Figure 17.6: A free body diagram of a
bucket rotating with angular velocity ! .
The free body diagram is of some small
chunk of water a distancer from the axis of
rotation. There are only two forces acting
on the chunk of water.

N

W

�
�

� r

� y

y0

r

y(r )

From equation 17.63, we see that
N sin� = W: (17.65)

From equation 17.64, we see that

N cos� = mr! 2: (17.66)

Dividing gets
tan � =

g
r! 2

(17.67)

We can read from the diagram that

tan � =
� r
� y

=
dr
dy

(17.68)

We can combined these equations to get

dr
dy

=
g

r! 2
(17.69)

dy =
! 2

g
rdr: (17.70)

Integrating gets us

y = y0 +
1
2

w2

g
r 2: (17.71)

wherey0 is the height of the water at the axis of rotation. We see that this is the equation
of a parabola. I think that this means the surface area will bea paraboloid.
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Chapter 18

Comprehensive Exam, part 2 -
Covers: E&M, Electrodynamics,
Circuits and Optics

18.1 Problem

\A charge + Q is distributed uniformly along thez axis from z = a to z = + a.
Find an exact expression for the electrostatic potential for points along thez axis
(with z > a). Then use this to write an approximate expression for the potential
at a point (r; � ) not (necessarily) on thez axis. The approximation should be a
power series expansion ina=r and should be accurate to fourth order ina=r." þ

z0 = � a z0 = az0 = 0
ẑ

z

z0 dz0 Figure 18.1: A rod.

We can calculate the potential due to the small bit of charge shown in �gure 18.1.

dV =
1

4�� 0

�dz 0

z � z0
(18.1)

Integrating over all of the rod gets us the total potential

V(z) =
1

4�� 0

Z a

� a

�dz 0

z � z0
(18.2)

=
�

4�� 0

�
� log(z � z0)ja� a

�
(18.3)

=
�

4�� 0
log

�
z + a
z � a

�
(18.4)
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This expression is valid forz > a. Of course, forz < a, we have charge immediately at our
point so our potential function would be in�nite. If we let u = a=z, we have

V =
�

4�� 0
log

�
1 + u
1 � u

�
(18.5)

We can expandV in powers ofu around u = 0. To do so, we have to calculate a whole
bunch of derivatives. Let

f (u) = log
�

1 + u
1 � u

�
(18.6)

Then,

f (0) = 0 (18.7)

Next, we calculate

f 0(u) =
1

�
1+ u
1� u

�
�

(1 � u) � (1 + u)( � 1)
(1 � u)2

�
(18.8)

=
2

(1 + u)(1 � u)
(18.9)

f 0(0) = 2 : (18.10)

(18.11)

Then we calculate

f 00(u) =
2(� 1)(� (1 + u) + (1 � u))

(1 + u)2(1 � u)2
(18.12)

=
4u

(1 + u)2(1 � u)2
(18.13)

f 00(0) = 2 : (18.14)

(18.15)

Then we calculate

f 000(u) =
4

(1 + u)2(1 � u)2
+

4u(� 2)(� (1 + u) + (1 � u))
(1 + u)3(1 � u)3

(18.16)

=
12u2 + 4

(1 + u)3(1 � u)3
(18.17)

f 000(0) = 4 : (18.18)

(18.19)
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Then we calculate

f 0000(u) =
(1 + u)3(1 � u)324u � (12u2 + 4)3(1 + u)2(1 � u)2(� 2u)

(1 + u)6(1 � u)6
(18.20)

=
48u(1 + u2)

(1 + u)4(1 � u)4
(18.21)

f 0000(0) = 0 : (18.22)

(18.23)

Then we calculate

f 00000(u) = 48
�

(1 + u)4(1 � u)4(1 + u2 + u(2u)) � u(1 + u2)4(1 + u)3(1 � u)3(� 2u)
(1 + u)8(1 � u)8

�

(18.24)

= 48
5u4 + 10u2 + 1
(1 + u)5(1 � u)5

(18.25)

f 00000(0) = 48: (18.26)

We can now do the expansion

V(z) =
�

4�� 0
f (u) (18.27)

=
�

4�� 0

�
f (0) + f 0(0)u +

f 00(0)
2!

u2 +
f 000(0)

3!
u3 +

f 0000(0)
4!

u4 +
f 00000(0)

5!
u5 + : : :

�
(18.28)

=
�

4�� 0

�
2u +

4
3!

u2 +
48
5!

u4 + : : :
�

(18.29)

=
Q

4�� 0

1
z

�
1 +

1
3

� a
z

� 2 1
5

� a
z

� 4
�

(18.30)

Where in the last step we use the fact thatQ = 2�a . Finally, we can write the potential due
to this charge distribution at any arbitrary point as the expansion of Legendre polynomials:

V(r; � ) =
1X

l=0

�
A l r l +

B l

r l+1

�
Pl (cos� ) (18.31)

Note that this expansion was derived with the assumption of azimuthal symmetry, which is
valid in this situation. Since V ! 0 asr ! 1 , we haveA l = 0:

V(r; � ) =
1X

l=0

�
B l

r l+1

�
Pl (cos� ) (18.32)

We can consider the special case of� = 0. We exploit the special property that Pl (cos 0) =
Pl (1) = 1. Since z = r cos� , r = z when � = 0. Thus,

V(r = z;0) =
B0

r
+

B1

r 2
+

B2

r 3
+

B3

r 4
+

B4

r 5
+ : : : (18.33)
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By examining our Taylor expansion for the potential on thez axis, we recognize that

B0 =
Q

4�� 0
(18.34)

B1 = 0 (18.35)

B2 =
Q

4�� 0

a2

3
(18.36)

B3 = 0 (18.37)

B4 =
Q

4�� 0

a4

5
(18.38)

(18.39)

So,

V(r; � ) =
Q

4�� 0

1
r

�
P0(cos� ) +

1
3

� a
z

� 2
P2(cos� ) +

1
5

� a
z

� 4
P4(cos� ) + : : :

�
(18.40)

18.2 Problem

\A long coaxial cable is made from two conducting cylindrical shells of radiusa
and b. (The space between them is empty.) At one end of the cable, the inner
conductor is attached to the positive terminal of a battery (potential + V ); the
outer conductor is attached to the negative terminal (potential zero). At the other
end of the cable, the two conductors are connected through a resistor (resistance
R). Note that the inner conductor will have some charge per unit length, and
will also have some current owing through it. Find the electric �eld in the cable
for a < r < b . Then �nd the magnetic �eld in the cable fora < r < b . Then �nd
the Poynting vector fora < r < b . Then integrate to �nd the total rate at which
electromagnetic �eld energy ows along the cable. Finally,say something about
where this energy comes from and where its headed." ¥

The current can be calculated asI = V=R. The voltage across the resistor falls o� linearly.
The reason why we know this is because resistors are made up out of linear materials so that
the amount of resistance is proportional to the length of theresistor. We could think of
dividing up the resistor into two parts, as is shown in �gure 18.3. The resistances shown on
the two parts of the resistor in the �gure are linear as desired. Since the voltage ata is V ,
the voltage at s will then have decreased by the voltage times the resistance:

V(s) = V � I
�

s � a
b� a

R
�

(18.41)

=
b� s
b� a

V (18.42)

If you notice, this is the linear decrease that I stated above. Now, what we are interested in
is the voltage everywhere inside the cylinders constrainedby the boundary conditions:
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a b

V = 0 V = + V

I z = 0

R

ŝ

�̂

ẑI

Figure 18.2: Two cylinders connected by
a resistor. The sketchy dashed line is an
Amperian surface that we will use later.

a s
b

s� a
b� a R b� s

b� aR

Figure 18.3: We can imagine divid-
ing the resistor into two smaller re-
sistors. This is used to calculate the
voltage at some point in the middle
of the resistor.

� V = + V for x = a.

� V = 0 for x = b.

� V(s) = b� s
b� aV across the resistor fora � s � b.

Of course, one obvious solution to Laplace's equation for these boundary conditions is

V(s) =
b� s
b� a

V (18.43)

for a � s � b. By the 1st uniqueness theorem from Gri�th's book, we know that this must
be the only unique solution for the potential.

We can calculate the electric �eld as

E = �r V = �
@V
@s

ŝ =
V

b� s
ŝ: (18.44)
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To calculate the magnetic �eld, we can draw an Amperian loop with radius a � s � baround
the �rst cylinder. This is the silly dashed line in �gure 18.2. We use Amp�ere's law:

I
B � dl = � 0I end: (18.45)

This gets us

B =
� 0I
2�s

: (18.46)

Using the rule where you put your thumb in the direction of thecurrent and your �ngers
curl in the direction of the magnetic �eld, we get

B = �
� 0I
2�s

�̂ (18.47)

We can now calculate the Poynting vector, which is the energyper unit time per unit area
that ows in some direction.

S =
1
� 0

(E � B ) (18.48)

=
1
� 0

�
V

b� a

� �
� 0I
2�s

�
ŝ � (� �̂ ) (18.49)

= �
V

b� a
I

2�s
ẑ (18.50)

We can calculate the total energy owing down the area between the cylinder per unit time:

dE
dt

=
Z

S
S � da =

Z 2�

0

Z b

a

IV
2�s (b� a)

sdsd� = IV = I 2R (18.51)

This means that energyI 2R per unit time is carried by the �eld down the cylinder. This
energy must be taken to the resistor and dissipated as Joule eating. The energy is used to
heat up the resistor.

18.3 Problem

\An AC voltage source (amplitudeV0, angular frequency! ) drives a circuit con-
sisting of a resistor (R) in series with a capacitor (C). What is the amplitude
of the voltage across the resistor? Describe qualitativelywhat will happen (i.e.,
what it will sound like) if the voltage source is replaced by aradio and the resistor
is replaced by a speaker." ÿ

kircho�'s Law gives us the equation we need:

V0ei!t �
Q
C

� IR = 0 (18.52)

CV0ei!t � Q � Q0RC = 0 (18.53)

(18.54)
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We guess a solution of the form
Q = kei!t (18.55)

with k some constant. Plugging in gets us we get

CV0ei!t � kei!t � i!k ei!t RC = 0 (18.56)

CV0 � k(1 + i!RC ) = 0 k =
CV0

1 + i!RC
(18.57)

Thus,

I =
i!CV 0

1 + i!RC
ei!t =

V0
1

i!C + R
ei!t (18.58)

The voltage drop across the resistor is:

V = IR =
V0R

1
i!C + R

ei!t (18.59)

The formula shows that there is a larger voltage drop across the resistor for larger angular
frequency.

Suppose the voltage source was replaced by a radio and the resistor by a speaker. The
radio would output a signal with many di�erent frequencies.The radio would make a sound
of each particular frequency proportional to the voltage drop across it for that particular
frequency. Since our circuit is set up so that the voltage drop across the speaker is bigger for
larger frequencies, our speaker would preferentially playhigh frequency sound. We would
hear the radio with a bias towards the high frequencies. I think this circuit is called a high
pass �lter.

By the way, the derivation would have been much easier if I used impedance, but I
couldn't remember exactly how to calculate it and I didn't have my Optics book.

18.4 Problem

\ Finn has a toy magnifying glass designed to look at bugs. Itsa cylinder whose
bottom is a platform where you can put a bug, and whose top is a converging lens.
With the cylinder sitting on a table, you can then look down from above and see
a magni�ed image of the bug through the lens. Suppose the focal length of the
lens is 10cm, and the platform where the bugs sit is 5cm behindthe lens. Draw
a diagram showing the primary rays and indicating the size and location of the
image that is seen. If Finn puts his eye a distanced above the lens, what is the
magni�cation? What range of magni�cations is possible? Howcould the device
be modi�ed to achieve greater magni�cation?"h

Figure 18.4 shows an optics digram of the toy with the primaryrays.1. Note that f
labeled in the diagram is the focal length. We haved = 5 cm and f = 10 cm Using similar

1Travis, I think �gured out the hint that you were getting at. I �gured out the diagram on my own.
Afterwards, I went to the Wikipedia page on convex lenses andsaw the same diagram. But I came up with
all of this work before going there
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d
a

f

h
l

Figure 18.4: The bug, the lens, and the virtual image.Eeew, bugs!

triangles
l
a

=
h
d

(18.60)

and
l

a + f
=

h
f

: (18.61)

So,

a =
d
h

� l (18.62)

and

l
d
h l + f

=
h
f

(18.63)

l =
d
f

� l + h (18.64)

l
�

1 �
d
f

�
= h: (18.65)

I believe that we de�ne the magni�cation M as

M �
l
h

: (18.66)

Finally,

M =
1

1 � d
f

: (18.67)

Since d=f = 1=2, we haveM = 2. I don't think there is any range to the magni�cation
(is this a trick question?) We could increase the magni�cation by increasingd=f either by
increasing the distance between the bug and the lens or by decreasing the focal length.
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18.5 Problem

\Find the transmission coe�cient for light waves passing through a pane of glass,
of thicknessd, at normal incidence. Hints: To the left, there is an incident wave
and a reected wave; to the right there is a transmitted wave only; inside the
glass there is a wave going to the right and a wave going to the left. Express each
of these waves in terms of its complex amplitude, and relate the amplitudes by
imposing suitable boundary conditions at the two edges. Neglect dispersion and
assume� = � 0. It is simplest to characterize the light by its wave number in the
glass. (This is problem 8.39 in Gri�ths E& M, 2nd ed.) Note the similarity to
a certain standard modern physics type of problem (reection/transmission from
a rectangular potential barrier with \height" V0 ). Does the example here with
light correspond toE > V 0 or E < V 0? Is there an analog with light for the other
case, too?" m

z = 0 z = d

glass

ẑ

x̂

ŷ

E I

B I
c

E T

B T
c

E R

c
B R

E MR

B MR
v

v
E MT

B MT

Figure 18.5: This �gure shows
the glass barrier and the ori-
entation of the waves in the
three sections. This whole setup
is very similar to the example
in Gri�th's book called Reec-
tion and Transmission at Nor-
mal Incidence.

There is an incident and reected wave to the left of the glass. There is also an incident
and reected wave in the glass. There is only a transmitted wave to the right of the glass.
This is shown in �gure 18.5. Outside the glass, the waves travel with velocity c and wave
vector k. Inside the glass, the waves travel with velocityv = c=n and wave vector� = nk
(since the angular frequency! is the same inside and outside sokc = ! = �v ). Thus, the
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incoming and reected waves are:

E I = ~E0I ei (kz� !t ) x̂ (18.68)

B I =
1
c

~E0I ei (kz� !t ) ŷ (18.69)

E R = ~E0Rei (� kz� !t ) x̂ (18.70)

B R = �
1
c

~E0Rei (� kz� !t ) ŷ: (18.71)

Inside the glass, we have

E MT = ~E0MT ei (�z � !t ) x̂ (18.72)

B MT =
n
c

~E0MT ei (�z � !t ) ŷ (18.73)

E MR = ~E0MR ei (� �z � !t ) x̂ (18.74)

B MR = �
n
c

~E0MR ei (� �z � !t ) ŷ: (18.75)

The transmitted wave is

E T = ~E0T ei (kz� !t ) x̂ (18.76)

B T =
1
c

~E0T ei (kz� !t ) ŷ: (18.77)

Since we are assuming that� air = � glass, our boundary conditions are:

E ==
left jz=0 = E ==

middle jz=0 (18.78)

B ==
left jz=0 = B ==

middle jz=0 (18.79)

E ==
middle jz= d = E ==

right jz= d (18.80)

B ==
middle jz= d = B ==

right jz= d (18.81)

with E left = E I + E R and E middle = E MR + E MT and E right = E T . Pluggin' in:

~EOI + ~EOR = ~E0MT + ~EOMR (18.82)
1
c

~EOI � 1
c

~EOR = n
c

~E0MT � n
c

~EOMR (18.83)

And:

~E0MT ei�d + ~EOMR e� i�d = ~E0T eikd (18.84)
n
c

~E0MT ei�d � n
c

~EOMR e� i�d = 1
c

~E0T eikd (18.85)

We want to calculate

R =

�
�
�
�
E0R

E0I

�
�
�
�

2

(18.86)
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and

T =

�
�
�
�
E0T

E0I

�
�
�
�

2

(18.87)

Remember that since the medium thatE0T is in is the same as the medium thatE0I is in,
there are no constants in the front of theT term. Using equation 18.82 and 18.83, we get

~EOI =
1 + n

2
~E0MT +

1 � n
2

~E0MR (18.88)

~EOR =
1 � n

2
~E0MT +

1 + n
2

~E0MR (18.89)

(18.90)

Using equation 18.84 and 18.85, we get

~EOMT =
1
2

�
1 + n

n
~E0T

eikd

ei�d
(18.91)

~EOMR =
1
2

�
n � 1

n
~E0T

eikd

e� i�d
(18.92)

From this, we get

~EOI =
�

(n + 1) 2

4n
eikd

ei�d
�

(n � 1)2

4n
eikd

e� i�d

�
~E0T (18.93)

After doing some math, we get

T =
16n2

(n + 1) 4 + ( n � 1)4 � 2(n + 1) 2(n � 1)2 cos(2�d )
(18.94)

=
16� 2k2

(� + k)4 + ( � � k)4 � 2(� + k)2(� � k)2 cos(2�d )
: (18.95)

I calculated that

lim
d! 0

T = 1; (18.96)

as is needed. We can now calculateR in just the same way:

~E0R =
1 � n

2

�
1
2

�
1 + n

n
~E0T

eikd

ei�d

�
+

1 + n
2

�
1
2

�
n � 1

n
~E0T

eikd

e� i�d

�
(18.97)

Simplifying a bit, this becomes:

~E0R =
n2 � 1

4n
(� 2i ) sin(�d ) ~EOT (18.98)
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From which we calculate that

R =

�
�
�
�
E0R

E0I

�
�
�
�

2

=

�
�
�
�
E0R

E0T

�
�
�
�

2 �
�
�
�
E0T

E0I

�
�
�
�

2

(18.99)

=
4(n2 � 1)2 sin2(�d )

(n + 1) 4 + ( n � 1)4 � 2(n + 1) 2(n � 1)2 cos(2�d )
(18.100)

=
2(1 � cos(2�d )

�
� + k
� � k

� 2
+

�
� � k
� + k

� 2
� 2 cos(2�d )

(18.101)

By working it out, I showed that

lim
d! 0

R = 0 (18.102)

I will save you the tedious algebra, but su�ce it to note that I worked through all the math
and T + R = 1, as is required.

I believe that this example corresponds toE > V scattering since most of the light goes
through the glass and is transmitted (just as how forE > V most of the light is transmitted.
I don't think there is an optical analog for anE < V barrier.

18.6 Problem

\A circular coil of wire (radius R) carries current I and lies in the x � y plane
with its center at the origin. (So thez-axis is its symmetry axis.) Find an exact
expression for the strength of the magnetic �eld along thez axis. Now: a second
identical coil (parallel to the �rst) is to be placed with itscenter at z = d. It is
desired to make the magnetic �eld in the region near the center of the coils (i.e.,
near z = d=2) as uniform as possible. Find the value ofd which accomplishes
this." …

Figure 18.6 R

z r

dB

dl 0

�

�

B
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Figure 18.6 shows the physical setup. Biot-Savart's Law tells us that

B (r ) =
� 0I
4�

Z
dl 0 � r̂

r 2
(18.103)

Since the di�erent parts of the coil have their x-y components of the magnetic �eld cancel
out, we have

B (r ) = B(z)ẑ (18.104)

We can solve Biot-Savart's equation:

B(z) =
� 0I
4�

Z
dl0cos�

r 2
(18.105)

=
� 0I
4�

cos�
r 2

� 2�R (18.106)

=
� 0IR 2

2
1

(R2 + z2)3=2
(18.107)

Notice that even for z < 0, the �eld points up! If we put another coil at a height d, the
magnetic �eld for 0 � z � d is

B(z) =
� 0IR 2

2

�
1

(R2 + z2)3=2
+

1
(R2 + ( d � z)2)3=2

�
(18.108)

We calculate
@B
@z

=
� 0IR 2

2

�
�

3z
(R2 + z2)5=2

+
3(d � z)

(R2 + ( d � z)2)5=2

�
(18.109)

And

@2B
@z2

=
� 0IR 2

2

�
�

3
(R2 + z2)5=2

+
15z2

(R2 + z2)7=2

�
3

(R2 + ( d � z)2)5=2
+

15(d � z)2

(R2 + ( d � z)2)7=2

�
(18.110)

Note that
@B
@z

�
�
�
�
z=

d
2

= 0 (18.111)

So we will set
@2B
@z2

�
�
�
�
z=

d
2

= 0 (18.112)

and see what condition arises ford. This value will correspond to the most constant magnetic
�eld. When we do so we get

� (R2 + ( d
2)2) + f ( d

2)2 = 0 (18.113)

which simpli�es to d = R. So, we can makeB vary least at z = d
2 if we setd = R.
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Chapter 19

Comprehensive Exam, part 3 -
Covers: Modern Physics, Quantum
Mechanics, Particle Physics

19.1 Problem

What is Compton scattering? What role did it play in the earlydays of quantum
theory? You probably recall an argument that treats the photon and electron as
classical particles, and derives the correct shift in wavelength for the scattered
photon. What can you say (or guess or speculate or vaguely sketch) about how
this process can be treated in a fully quantum mechanical way? (You shouldn't
really have to do any calculations here at all. The last question amounts to: in
broad, qualitative strokes, how might you apply some of the more advanced stu�
you've learned recently to analyze Compton scattering?)

v; m

� � 0

�

�

Figure 19.1: The Compton scattering dia-
gram. Here, we have a particle of wave-
length � coming in from the left. It scat-
ters o� a particle of mass m and scatters
at angle � . The other particle recoils with
velocity v and scatters at an angle� .

Figure 19.1 shows the diagram that we need. A photon treated as a particle with wave-
length � comes in from the left at the speed of lightc, collides with a particle at rest, and
scatters o� at some angle� . After the collision, the photon has wavelength� 0. We can apply
conservation of relativistic energy and momentum (where weuse the quantum formulas for
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the photon: p = h=� and E = hc=� ). Conservation of energy gets us

hc
�

+ mc2 =
hc
� 0

+ mc 2: (19.1)

Conservation of momentum gets us

h
�

=
h
� 0

cos� + mv cos� (19.2)

h
� 0

sin� = mv sin�: (19.3)

Squaring and adding the equations:

 2m2v2 =
�

h
�

�
h cos�

� 0

� 2

+
�

h sin�
� 0

� 2

(19.4)

=
h2

� 2
�

2h2

�� 0
cos� +

h2

� 02
: (19.5)

We can solve the energy conservation equation forv and use this to write  2m2v2 in terms
of � and � 0.

 2m2c4 =
�

hc
�

+ mc2 �
hc
� 0

� 2

(19.6)

1 �
v2

c2
=

m2c4

�
hc
� + mc2 � hc

� 0

� 2 (19.7)

v2

c4
=

1
c2

�
m2c2

�
hc
� + mc2 � hc

� 0

� 2 (19.8)

So,

 2m2v2 = (  2m2c4)
�

v2

c4

�
(19.9)

=
�

hc
�

+ mc2 �
hc
� 0

� 2
 

1
c2

�
m2c2

�
hc
� + mc2 � hc

� 0

� 2

!

(19.10)

=
h2

� 2
+

h2

� 02
+ 2

hmc
�

+ 2
hmc
� 0

� 2
h2

�� 0
(19.11)

Thus,

h2

� 2
+

h2

� 02
+ 2

hmc
�

� 2
hmc
� 0

� 2
h2

�� 0
=

h2

� 2
� 2

h2

�� 0
cos� +

h2

� 02
(19.12)

(� 0 � � )mc = h(1 � cos� ) (19.13)

� 0 = � + ( h=mc)(1 � cos� ) (19.14)

According to Gri�th's Particle textbook:
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What �nally settled the issue [of whether the electric �eld is quantized as particles
called photons] was an experiment conduced by A. H. Compton in 1923. Compton
found that the light scattered from a particle at rest is shifted in wavelength,
according the equation

� 0 = � + � c(1 � cos� ) (19.15)

where� is the incident wavelength,� 0 is the scattered wavelength,� is the scat-
tering angle, and

� c = h=mc (19.16)

is the so-called Compton wavelength of the target particle (massm). Now this
is precisely the formula you get (Problem 3.24) if you treat light as a particle
of zero rest mass with energy given by Planck's equation, andapply the laws of
conservation of (relativistic) energy and momentum{just what you would for an
ordinary elastic collision. That clinched it; here was direct and incontrovertible
experimental evidence that light behaves as a particle, on the subatomic scale.

1st order Higher Order

Figure 19.2: The Compton scatter-
ing Feynman diagrams. The �rst
diagram is the 1st order Feynman
diagram. The second is one of the
many higher order diagrams.

In order to treat Compton scattering properly, you have to draw Feynman diagrams for
the process and calculate the numbers associated with them.The sum of all the numbers
would be the amplitude for Compton scattering to happen. Figure 19.2 shows the �rst order
Feynman diagram for this process and one of the higher order terms. I am not exactly sure
how you would use the Feynman calculus to �gure out the wavelength shift for a particular
angle since things like direction don't matter in Feynman diagrams. . .

19.2 Problem

Calculate the lifetime (in seconds) for each of the fourn = 2 states of hydrogen.
Hint: You'll need to evaluate matrix elements of the formh 100jyj 211i , and so
on. Remember thatx = r sin� cos� , y = r sin� sin� , and z = r cos� . Most of
the integrals are zero, so think before you calculate.
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Suppose we have a Hamiltonian̂H = Ĥ0 + Ĥ1. We can write an arbitrary solution as a
sum of the eigenstates ofH0:

j (t)i =
X

n

cn (t)eiE (0)
n t=~ jE (0)

n i : (19.17)

According to time dependent perturbation theory, we can write the time dependent constants
out front as

cf (t) = � f i �
i
~

Z t

0
dt0ei (E (0)

f � E (0)
i )t0=~ hE (0)

f jĤ1(t0)jE (0)
i i : (19.18)

We have �
�
�hE (0)

f jÛI (t)jE (0)
i i

�
�
�
2

= jcf (t)j2: (19.19)

This is the probability of making a transition from the initi al to the �nal state in time t.
We will apply this formalism to the case of the hydrogen atom in an electromagnetic

�eld. We will treat the EM �eld as the perturbing Hamiltonian Ĥ1 and use the hydrogen
eigenstates as the unperturbed basis.

We will deal with some initial state ji i that is an energy eigenstate of the hydrogen atom
and jf i as some other energy eigenstate. Our goal will be to calculate the probability per
unit time of making a transition from this state to a lower energy state by emitting a photon
in any direction. Eventually, we will want to calculate the lifetime of the excited state.

The perturbing Hamiltonian is

Ĥ1 !
e

mec
Â �

h
i
r +

e2

2mec2
Â

2
(19.20)

With

Â =
X

k ;�

c

r
2� ~
!

 

âk ;� � (k ; � )
ei (k �r )

p
V

+ ây

k ;�
� (k ; � )

e� i (k �r )

p
V

!

(19.21)

SinceĤ1 is independent of time, we have

j hf jÛI ji i j 2 =
1
~2

�
�
�
�

Z t

0
dt0ei (E (0)

f � E (0)
i )t0=~

�
�
�
�

2 �
�
�hf jĤ 1ji i

�
�
�
2

(19.22)

=
1
~2

sin2((E (0)
f � E (0)

i )t=2~)

(E (0)
f � E (0)

i )=2~
j hf jĤ 1ji i j 2 (19.23)

This is the probability of having a transition from i to f with the emission of some particular
photon of wave vectork. The time t imposed by experimental set-ups allows us to without
loss of generality take the large time limit. In that case, wecan use the representation of
the Dirac delta function

lim
t !1

1
�

sin2(ta)
ta2

= � (a) (19.24)
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to write the transition probability as

lim
t !1

j hf jÛI ji i j 2 =
�t� ((E (0)

f � E (0)
i )=2~)

~2
j hf jĤ 1ji i j 2: (19.25)

The total probability of having a photon emission is equal tothe sum over all photons of the
probability of that photon being emitted.

P =
X

�

X

k
j hf jÛ I ji i j 2 (19.26)

The sum over� accounts for the two polarizations of the photons. Following the discussion
in the Townsend book, we are supposed to apply periodic boundary conditions to space.
This quantized the photons so that their wave vector is always of the form

kxL = 2�n x kyL = 2�n y kzL = 2�n z (19.27)

with nx ; ny ; nz = 0; � 1; � 2; : : :. When we do this, we �nd that the number of states with
wave vector betweenk and k + dk in the solid angled
 is

�
L
2�

� 3

k2dkd
 (19.28)

with L the size of our box. UsingE = ~! , we can write the number of states with energy
betweenE and E + dE as:

V
(2� )3

! 2

~c3
dEd
 (19.29)

Thus, our total probability of having a transition is

P =
X

�

X

k
j hf jÛ I (t)ji i j 2 =

X

�

Z
dE

Z
d


�t� ((E (0)
f � E (0

i )=2~)

~2
j hf jĤ 1(t)ji i j 2 V ! 2

(2� )3~c3

(19.30)
Of course, the total �nal energy is just the energy of the photon plus the energy of the
electron: E (0)

f = En f + E. So we can write our delta function as

� ((E (0)
f � E (0

i )=2~) = �
�

En f + E � En i

2~

�
= 2~� (E � (En i � En f )) (19.31)

This delta function kills one of our integrals:

P =
X

�

Z
2�t
~

j hf jĤ 1ji i j 2 V ! 2

(2� )3~c3
(19.32)

Thus, the probability of making the transition per unit time is

R =
X

�

Z
2�
~

j hf jĤ 1ji i j 2 V ! 2

(2� )3~c3
: (19.33)
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SinceR is independent of time, we know that that if we haveN atoms an amountdN will
decay in a timedt such that

dN = � NRdt (19.34)

N (t) = N (0)e� Rt = N (0)e� t=� (19.35)

Thus, the lifetime of our atom is� = 1=R. Now, we calculate

hf jĤ 1ji i = h1k ;� j hnf ; l f ; mf jĤ 1jni ; l i ; mi i j 0i (19.36)

Note that the second term in the perturbing Hamiltonian

Ĥ1 !
e

mec
Â �

h
i

r +
e2

2mec2
Â 2 (19.37)

will contribute nothing to our integral because the terms init are all of the form âk ;� âk ;� ,

ây

k ;�
ây

k ;�
, and ây

k ;�
âk ;� . None of these take us from state with no photons to a state with 1

photon. Thus, our inner product becomes

h1k ;� j hnf ; l f ; mf jĤ 1jni ; l i ; mi i j 0i =

e
mec

e

r
2� ~
!V

Z
d3r �

n f ;l f ;m f
e� ik �r � (k ; � ) �

~
i
r  n i ;l i ;m i (h1k ;� jây

k ;�
j0i ) (19.38)

with
h1k ;� jây

k ;�
j0i = h1k ;� j1k ;� i : (19.39)

We make the approximation

e� ik �r ! 1: (19.40)

This is called the electric dipole transition. Now, we can use a trick to simplify equation 19.38.
The trick is:

[Ĥ 0; x̂ i ] =
�

p2

2�
; x̂ i

�
(19.41)

=
X

j

�
p̂j p̂j

2�
; x̂ i

�
(19.42)

=
1

2�

X

j

(p̂j [p̂j ; x̂ i ] + [ p̂j ; x̂ i ]p̂j ) (19.43)

(19.44)

= �
1
�

X

j

p̂j i~� i;j = �
i~
�

p̂i (19.45)
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Therefore,

hnf ; l f ; mf jp̂i jni ; l i ; mi i =
i�
~

hnf ; l f ; mf j[Ĥ 0; x̂ i ]jni ; l i ; mi i (19.46)

=
i�
~

(En f � En i ) hnf ; l f ; mf jx̂ i jni ; l i ; mi i (19.47)

= � i�! hnf ; l f ; mf jx̂ i jni ; l i ; mi i (19.48)

Thus,
hnf ; l f ; mf jp̂jni ; l i ; mi i = � i�! hnf ; l f ; mf j r̂ jni ; l i ; mi i (19.49)

Therefore, we can replace~i r = p̂ in equation 19.38 with� i�! r̂ . When we do this, we get

R =
X

�

Z
2�
~

 

c

r
2� ~
!V

! 2

e2 ! 2

c2

�
�
�
�

Z
d3r �

n f ;l f ;m f
r � � (k ; � ) n i ;l i ;m i

�
�
�
�

2 V ! 2d

(2� )3c3~

(19.50)

=
�! 3

2�c 2

X

�

Z �
�
�
�

Z
d3r �

n f ;l f ;m f
r � � (k ; � ) n i ;l i ;m i

�
�
�
�

2

d
 (19.51)

We can write r � � as

r � � =
�

� x + i� yp
2

� �
x � iy

p
2

�
+

�
� x � i� yp

2

� �
x + iy

p
2

�
+ � zz (19.52)

= r

r
4�
3

�
� x + i� yp

2
Y1;� 1 �

� x � i� yp
2

Y1;1 + � zY1;0

�
(19.53)

If we are dealing with the 2s to 1s transition, equation 19.51 contain an integral of the form

Z
d3rR �

1;0Y
�

0;0r

r
4�
3

�
� x + i� yp

2
Y1;� 1 �

� x � i� yp
2

Y1;1 + � zY1;0

�
R2;0Y0;0 (19.54)

Inside of this are three summed integrals of the form
Z

d
 Y �
1;m Y0;0 (19.55)

This integrates to 0 because of the orthogonality of theY 's. Thus, R ! 0 and � ! 1 .
Or, the 2s ! 1s transition is forbidden, at least to �rst order. Next, we cancalculate the
2p ! 1s transition. It contains the integral

Z
d3rR �

1;0Y �
0;0r

r
4�
3

�
� x + i� yp

2
Y1;� 1 �

� x � i� yp
2

Y1;1 + � zY1;0

�
R2;1Y1;m i (19.56)

We can again exploit the orthogonality of theY's
Z

d
 Y �
1;m Y1;m i = � m;m i (19.57)
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to rewrite this integral as
r

1
3

�
� x + i� yp

2
� m i ;1 �

� x � i� yp
2

� m i ;� 1 + � z� m i ;0

� Z 1

0
drr 3R�

1;0R2;1 (19.58)

The R dependence integrates to
Z 1

0
drr 3R�

1;0R2;1 =

r
3
2

28

35
a0 (19.59)

so the absolute value squared of the large integral is

1
3

�
� 2

x + � 2
y

2
� m i ;1

� 2
x + � 2

y

2
� m i ;� 1� 2

z� m i ;0

�
215

39
a2

0: (19.60)

Now, we can assume that a photon is equally likely to be emitted with any polarization,
from which we deduce that

h� 2
x i = h� 2

y i = h� 2
y i : (19.61)

But we also know that � is a unit vector. So,

h� 2
x i + h� 2

y i + h� 2
y i = 1 (19.62)

Thus
h� 2

x i = h� 2
y i = h� 2

y i =
1
3

(19.63)

Since all we are interested in is the average life time of the state, we can take the average of
our integral and it become, for all themi :

�
�
�
�

Z
d3r �

n f ;l f ;m f
r � � (k ; � ) n i ;l i ;m i

�
�
�
�

2

=
1
3

�
1
3

�
215

39
a2

0 =
215

311
a2

0: (19.64)

Thus, we have

R2p! 1s =
�! 3

2�c 2

X

�

Z �
215

311
a2

0

�
d
 (19.65)

There are 2 polarization states. We are interested in decaysinto all of space so the in�nites-
imal solid angle integrates to 4� . Thus, our integral becomes

R2p! 1s =
�! 3

c2

217

311
a2

0: (19.66)

Note that ~! = E2p � E1s = 1
2mec2� 2(1 � 1=22) so

R2p! 1s =
�

2
3

� 8

� 5 mec2

~
(19.67)

and
� 2p! 1s =

1
R2p! 1s

: (19.68)
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19.3 Problem

Estimate (or really: put a bound on) the ground state energy of Hydrogen using
the variational principle, using a trial wave function of the form:  (r ) = Ae� br2

.

I can't crack this problem but I will write down what I did. The whole trick to this
problem is to calculatehEi . We know is at least as large as the ground state. Therefore,
it is an upper bound on ground the state energy. Once we calculate hEi , we can �nd the b
that minimizes this function to get the lowest upper bound. First, we need to be properly
normalized:

1 =
Z

 2d3r =
Z 1

0
A2e� 2br2

4�r 2dr (19.69)

1 = 4�A 2 1
4

r
�

(2b)3
(19.70)

A2 =
�

2b
�

� 3=2

(19.71)

Now, I will calculate hEi . We know that the Hamiltonian is

Ĥ ! �
~2r 2

2�
�

e2

r
(19.72)

hEi = h jĤ j i (19.73)

=
Z 1

0
Ae� br2

�
�

~2

2�
1
r 2

@
@r

�
r 2 @

@r

�
�

e2

r

�
Ae� br2

4�r 2dr (19.74)

= 4�A 2
Z 1

0
dre� 2br2

�
�

~2

2�

�
6 � 14br2 + 4b2r 4

�
� re2

�
(19.75)

Now, using the Gaussian integral equations from the Townsend book1, we get

hEi = 4�
�

2b
�

� 3=2 �
�

~2

2�

�
6

1
2

r
�
2b

� 14b
1
4

r
�

(2b)3
+ 4b2 3

8

r
�

(2b)5

�
�

e2

4b

�
(19.76)

= 8b

r
2b
�

�
�

~2

2�
13
8

r
�
2b

�
e2

4b

�
(19.77)

= �
13
2

~2

�
b� 2e2

r
2b
�

: (19.78)

Unfortunately, this equation is wrong since it grows inde�nitely negative for su�ciently large
b. This is unphysical. If I could have gotten the true equation, I would have set

@
@b

hEi = 0: (19.79)

I would have solve for this forb and then plugb's value into hEi to �nd my upper bound for
the ground state energy. Do you have any idea what I am doing wrong in this problem?

1Travis told me how to do the last Gaussian integral over the phone { thanks for the tip!
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19.4 Problem

You've learned about the Born approximation in the context of 3D scattering
problems. It is possible to de�ne a Born approximation also for 1D problems,
where instead of wanting to calculate the di�erential crosssection, the relevant
predictions are just the reection and transmission coe�cientsR and T. Explain
why the Born approximation expression forR is:

R �
� m

~2k

� 2
�
�
�
�

Z
e2ikx V(x)dx

�
�
�
�

2

: (19.80)

Then use it to calculate the reection probability when the scattering center is a
rectangular barrier of \height" V0 and width a. In what limit(s) do you expect
the answer to be accurate?2

Ah, problem 13.4 from Townsend's book. A solution to the one-dimensional Schr•odinger
equation is

 (x) = Aeikx +
Z

dx0G(x; x0)
2m
~2

V(x0) (x0) (19.81)

where
@2

@x2
G(x; x0) + k2G(x; x0) = � (x � x0): (19.82)

To prove this, all I have show that it is a solution to

Ĥ (x) = E (x) (19.83)

whereE = ~2k2=2m.

Ĥ (x) =
�

�
~2

2m
@2

@x2
+ V(x)

�
 (x) (19.84)

= �
~2

2m
@2

@x2

�
Aeikx +

Z
dx0G(x; x0)

2m
~2

V(x0) (x0)
�

+ V(x) (x) (19.85)

=
~2k2

2m
Aeikx �

~2

2m

Z
dx0(� (x � x0) � k2G(x; x0))

2m
~2

V(x0) (x0) + V(x) (x)

(19.86)

=
~2k2

2m
Aeikx � V (x) (x) +

~2k2

2m

Z
dx0G(x; x0)

2m
~2

V(x0) (x0) + V(x) (x) (19.87)

=
�

~2k2

2m

� �
Aeikx +

Z
dx0G(x; x0)

2m
~2

V(x0) (x0)
�

(19.88)

= E (x): (19.89)

2By the way, there is an error in your formula. The fraction in f ront is m=~2k but you wrote m=~k. Oops
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We can integrateG(x; x0) from just below to just abovex = x0 Note that the k2G(x; x0) term
integrates to 0 in this in�nitesimal range and the delta function integrates to 1:

Z x= x0
+

x= x0
�

@2

@x2
G(x; x0) +

Z x= x0
+

x= x0
�

k2G(x; x0) =
Z x= x0

+

x= x0
�

� (x � x0) (19.90)

�
@G
@x

�

x= x0
+

�
�

@G
@x

�

x= x0
�

= 1: (19.91)

We can now show that a solution forG(x; x0) is

G =

(
1

2ik eik (x � x0) x > x 0

1
2ik e� ik (x � x0) x < x 0

(19.92)

To do so, we show that this is a solution forx < x 0, x = x0, and x > x 0. First, observe that
for x < x 0 we have

@2

@x2
G(x; x0) + k2G(x; x0) =

� k2

2ik
eik (x � x0) +

k2

2ik
eik (x � x0) = 0 (19.93)

as expected. Forx > x 0, we have

@2

@x2
G(x; x0) + k2G(x; x0) =

� k2

2ik
e� ik (x � x0) +

k2

2ik
e� ik (x � x0) = 0 (19.94)

as expected. Finally, we calculate
�

@G
@x

�

x= x0
+

�
�

@G
@x

�

x= x0
�

=
ik
2ik

eik (x � x0)
�
�
�
x= x0

�
� ik
2ik

e� ik (x � x0)
�
�
�
x= x0

= 1 (19.95)

as is needed for our function to work atx = x0. So this is a valid solution forG.
We can now apply the Born approximation:

 (x) � Aeikx : (19.96)

We use this approximate solution on the right side of equation 19.81. We will then take
the x ! �1 limit of the equation to �nd the reection term. In this limit , we have:
G(x; x0) = 1

2ik exp(� ik (x � x0)):

 (x) ����!
x!�1

Aeikx +
Z

dx0 1
2ik

e� ik (x � x0) 2m
~2

V(x0)Aeikx (19.97)

����!
x!�1

Aeikx + Ae� ikx
Z 1

�1
dx0e

2ikx 0

2ik
2m
~2

V(x0) (19.98)

Thus

R �
� m

~2k

� 2
�
�
�
�

Z
e2ikx V(x)dx

�
�
�
�

2

: (19.99)
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We will now work with the potential barrier

V(x) =

(
V0 0 < x < a

0 elsewhere
: (19.100)

Solving for R gets

R =
� m

~2k

� 2
�
�
�
�

Z a

0
e2ikx V0dx

�
�
�
�

2

(19.101)

=
�

mV0

~2k

� 2 �
�
�
�

1
2ik

e2ikx

�
�
�
�

a

0

�
�
�
�

2

(19.102)

=
�

mV0

~2k2

� 2 �
�
�
�
e2ika � 1

2i

�
�
�
�

2

(19.103)

=
�

mV0

~2k2

� 2 �
�
�
�
eika � e� ika

2i

�
�
�
�

2

(19.104)

=
�

mV0

~2k2

� 2

sin2(ka) (19.105)

=
�

V0

2E

� 2

sin2(ka) (19.106)

This formula is valid in the large energy limit E >> V 0. In fact, the Townsend book gives
the exact expression forT = 1 � R as

T =
1

1 + ( V 2
0 =4E(E � V0)) sin2(

p
(2m=~2)(E � V0)a)

(19.107)

Or,

R =
(V 2

0 =4E(E � V0)) sin2(
p

(2m=~2)(E � V0)a)

1 + ( V 2
0 =4E(E � V0)) sin2(

p
(2m=~2)(E � V0)a)

(19.108)

In the large energy limit, this equation reduces to

R ����!
E>>V 0

(V0=2E)2 sin2(
p

2mE=~2a)
1 + O(V0=E)2

=
�

V0

2E

� 2

sin2(ka) (19.109)

just as we predicted.

19.5 Problem

Let 0

@
E0 0 A
0 E1 0
A 0 E0

1

A (19.110)
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be the matrix representation of the Hamiltonian for a three-state system using
basis statesj1i , j2i , and j3i . If the state of the system at t = 0 isj (0)i = j2i ,
what is j (t)i ? How about ifj (0)i = j3i ?

The �rst part is easy. Note that j2i is an energy eigenstate of the Hamiltonian with eigenvalue
(energy) E1: 0

@
E0 0 A
0 E1 0
A 0 E0

1

A

0

@
0
1
0

1

A = E1

0

@
0
1
0

1

A (19.111)

Since it is an eigenstate, we know thatj (t)i = j2i . j3i is not an eigenstate so we will have
to write it as a linear combination of energy eigenstates. Webegin by �nding the energy
eigenstates of the Hamiltonian:

�
�
�
�
�
�

E0 � � 0 A
0 E1 � � 0
A 0 E0 � �

�
�
�
�
�
�

= 0: (19.112)

Or,
(E0 � � )2(E1 � � ) � A2(E1 � � ) = 0 (19.113)

So � = E1, and � = E0 � A. The � = E0 + A solution leads to:
0

@
E0 0 A
0 E1 0
A 0 E0

1

A

0

@
a
b
c

1

A = ( E0 + A)

0

@
a
b
c

1

A (19.114)

or

E0a + Ac = ( E0 + A)a (19.115)

a = c (19.116)

The middle equation says thatb= 0. An eigenstate is

jE0 + Ai =
1

p
2

(j1i + j3i ) (19.117)

The � = E0 � A solution leads to
0

@
E0 0 A
0 E1 0
A 0 E0

1

A

0

@
a
b
c

1

A = ( E0 � A)

0

@
a
b
c

1

A (19.118)

or

E0a + Ac = ( E0 � A)a (19.119)

a = � c: (19.120)
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Another eigenstate is

jE0 � Ai =
1

p
2

(j1i � j 3i ): (19.121)

The �nal eigenstate (which we already saw) is

jE1i = j2i : (19.122)

We can write j2i as a linear combination of the eigenstates:

j2i =
1

p
2

(jE0 + Ai � j E0 � Ai ): (19.123)

We can easily do the time evolution to the eigenstates

j (t)i = ei Ĥt= ~ j (0)i (19.124)

= ei Ĥt= ~ j2i (19.125)

= ei Ĥt= ~ 1
p

2
(jE0 + Ai � j E0 � Ai ) (19.126)

=
1

p
2

(ei (E0+ A)t=~ jE0 + Ai � ei (E0 � A )t=~ jE0 � Ai ) (19.127)

=
1
2

eiE 0 t=~
��

eiAt= ~ � eiAt= ~
�

j1i +
�
eiAt= ~ + e� iAt= ~

�
j3i

�
(19.128)

= eiE 0 t=~ (i sin(At=~) j1i + cos(At=~) j3i ) : (19.129)

We �nd that

j h1j (t)i j 2 = sin2(At=~) (19.130)

j h3j (t)i j 2 = cos2(At=~) (19.131)

19.6 Problem

What is Bell's Theorem and what does it prove? (No need to recapitulate the
mathematical derivation, which is a standard thing in several texts. Just summa-
rize the structure of the argument, and then explain its implications.)

The general setup of Bell's inequality is a physical processwhere two spin 1/2 particles are
at the same time. Because of conservation laws, we know that the total spin in any direction
must be 0. If one particle is measured to be spin up in some direction, the other particle
must be spin down. For momentum to be conserved, the two particles must leave in opposite
directions. We can set up two Stern-Gerlach machines to measure the spin components of
the two particles along any axis that we wish.

Bell's theorem requires assuming that there are hidden variables (the spin of the particles)
and that there is locality. When you assume these two features, you can assign to the particles
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a de�nite value of spin for three di�erent spacial components. We might not know what the
value is before measuring it, but it is there. The particle must already know going into the
SG machine what its spin is. Because we set the SG machines farapart, we know form
locality that the measurement of one particle's spin cannota�ect the measurement of the
other particle's spin. If you do the book keeping, you can show that these two assumptions
leads to predictions about the probability of certain spin measurements. We can use or SG
machine to measure spin along three separate axis. We will call these three axisa, b, and
c. We can set up the �rst SG machine to measure �rst particle's spin along one of these
axis and the second SG machine to measure the second particle's spin along the other axis.
Bell's inequality says that

P(+ a; + b) � P(+ a; + c)P(+ c; + b) (19.132)

where P(+ a; + b) is the probability of the �rst SG machine measuring spin +a and the
second SG machine measuring spin +b, etc. The important point is that standard quantum
mechanics predicts probabilities in certain situations that violate this inequality. And this
inequality has been put up to experimental tests. The Experiments are in agreement with
quantum mechanics but in violation of Bell's inequality.

From these experimental results, we must conclude that someof the assumptions that
Bell uses in deriving his inequality are wrong. Since Bell assumes that there are hidden
variables and that the world works in a local way, we must conclude that it is impossible for
the world to both have hidden variables and be local.
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Chapter 20

Comprehensive Exam, part 4 -
Covers: Statistical Mechanics,
Thermodynamics, Astrophysics

20.1 Problem

\Here is a very simpli�ed model of the unwinding of two-stranded DNA molecules:
a zipper has N links; each link has a state in which it is closedwith energy 0 and
a state in which it is open with energy� . We require that the zipper can only
unzip from the left end, and that the link numbers can only open if all links to
the left (1; 2; : : : ; s� 1) are already open. Show that the partition function is given
by

X =
1 � exp[� (N + 1) �=kT ]

1 � exp(� �=kT )
(20.1)

and then �nd the average number of open links in the limit� � kT." { Travis
Norsen

The partition function is

Z �
X

r

e� E r =kT : (20.2)

The sum is over all possible states. For this example, we can make a list of all possible states
and their particular energy. There is only one state where all the links are closed and it
has energy 0. There is only one state where one link is open andit has energy� . There is
only one state where two links are open and it has energy 2� . The argument continues until
we get to the �nal state where all links are open and the energyis N�=kT . Using this The
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partition function is

Z = e0 + e� �=kT + e� 2�=kT + : : : + e� (N � 1)�=kT + e� N�=kT (20.3)

Z =
NX

n=0

�
e� �=kT

� n
: (20.4)

It is a mathematical fact that

S =
NX

n=0

Rn =
1 � RN +1

1 � R
: (20.5)

From this:

Z =
1 � e� (N +1) �=kT

1 � e� �=kT
: (20.6)

The probability for each state is

Pr =
e� E r =kT

P
e� E r =kT

: (20.7)

The average number of open links is equal to the weighted average of the number of open
links:

�N =
NX

n=0

ne� n�=kT

P
e� E r =kT

: (20.8)

In the large � limit, all the terms are 0. The average number of open links is0. This makes
sense. When the system is very cold, the protein will stay mostly intact.

20.2 Problem

\A cold white dwarf is held up against gravitational collapse by the pressure of
degenerate electrons. What is the total energy of a gas ofN non-interacting, non-
relativistic degenerate electrons con�ned to a sphere of radius R? Assuming the
white dwarf contains equal numbers of neutrons and protons,rewrite this energy
in terms of the massM of the star. The other main contribution to the energy
is the gravitational binding energy (which is of course negative). Write down an
expression for the total energy of the star as a function ofR (and other relevant
parameters). Show thatE(R) has a minimum for some particular value ofR,
and solve for this to �nd the mass-radius relation for a whitedwarf. (Check your
answer by con�rming that, unlike chocolate cakes, white dwarfs shrink when you
add mass to them.)"{ Travis Norsen

Stars are big so boundary e�ects are negligible in comparison to the e�ects due to the matter
well inside the star. Therefore, the particular boundary conditions we pick won't matter.
We will therefore solve the time independent Schr•odinger equation for the electrons in the
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star as though our star is a cube of lengthL and volume V = L3. We will use periodic
boundary conditions:

 (x + L; y; z) =  (x; y + L; z) =  (x; y; z + L) =  (x; y; z): (20.9)

We can approximate the electrons as a free gas. The reason whythis is a reasonable as-
sumption is because the positive charge from the protons will be fairly evenly distributed so
their net e�ect will be weak. Approximately, the only net e�ect due to the protons will be to
con�ne the electrons within the star. The solution to the Schr•odinger equation is therefore

 / ekx x+ ky y+ kz z: (20.10)

The energy of the electron is

� =
~2k2

2me
(20.11)

whereme is the mass of an electron. To satisfy the boundary conditions, we have

kx =
2�
L

nx ky =
2�
L

ny kz =
2�
L

nz (20.12)

Electrons obey the Fermi exclusion principle so only one electron can occupy each quantum
state. The number of possible integersnx for which kx lies in the range betweenkx and
kx + dkx is

� nx =
L
2�

dkx : (20.13)

The total number of states with wave vector betweenkx and kx + � kx , ky and ky + � ky ,
and kz and kz + � kz is the product of the number of possible integers in the threeranges.
We have to add an extra factor of 2 since each of these state cancan be �lled up with two
electrons each of di�erent spin:

� kd3k = 2
�

L
2�

dkx

� �
L
2�

dky

� �
L
2�

dkz

�
= 2

V
(2� )3

dkxd3k =
V
� 2

k2dk: (20.14)

The total number of states in this same range with energy between� and � + d� is

j� � d� j = j� kdkj = � k

�
�
�
�
dk
d�

�
�
�
� d� = � k

�
�
�
�
d�
dk

�
�
�
�

� 1

d� =
V
� 2

(2me)3=2

~3
� 1=2d�: (20.15)

We calculate the electron with highest energy as

N =
Z � f

0
� � d� =

V
� 2

(2me)3=2

~3

2
3

� 3=2
f : (20.16)

It follows that

� f =
�

3
2 � 2 ~3

(2m)3=2

N
V

� 2=3

: (20.17)
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We can calculate the total energy due to electron degeneracyas

Ed =
Z � f

0
�� � d� (20.18)

We get

Ed =
Z � f

0

V
� 2

(2me)3=2

~3
� 3=2d� =

1
5

35=3

25=3

� 4=3~2N 5=3

meV 2=3
: (20.19)

For every electron, there is a proton and a neutron (of roughly the same massmp. Therefore,
we haveM = 2mpN . Also, V = 4

3 �R 3.

Ed =
1
5

37=3

214=3m5=3
p me

M 5=3

R2
: (20.20)

We can write Ed as

Ed �
KM 5=3

R2
(20.21)

whereK is a constant of proportionality.
Next, we consider the gravitational potential energy. We can imagine building up the

star from thin shells one at a time. When we add the shell of radius r and thicknessdr, the
gravitational potential energy due to this shell is

dU(r ) = dM � V(r ) = �
GM (r )dM

r
: (20.22)

M is the mass of the already assembled star of radiusr and dM is the mass of the thin shell.
The mass of the interior sphere is equal to the volume times the density soM = 4

3 �r 3 M
V .

The mass of the shell isdM = 4�r 2dr M
V . The energy associated with the shell is

dU(r ) = �
G4

3 �r 3 M
V 4�r 2dr M

V

r
= �

16� 2GM 2

3V 2
r 4dr: (20.23)

The total potential energy is the integral over all the shells

U =
Z R

0
dU = �

16� 2GM 2

3V 2

1
5

R5 = �
3
5

GM 2

R
: (20.24)

The total energy is thus

E = Ed + U =
KM 5=3

R2
�

3
5

GM 2

R
: (20.25)

We set @E=@R= 0 and solve forR to minimize the energy. We �nd that

R =
10
3

K
GM 1=3

: (20.26)

Plugging in for K , we �nd that

R =
2
3

37=3

214=3m5=3
p me

1
GM 1=3

: (20.27)
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20.3 Problem

\Suppose a star were made of an ideal gas composed of molecules of massm
at a uniform temperature T. By considering hydro-static equilibrium, develop
a di�erential equation that should be satis�ed by� (r ), the mass density as a
function of radius. (You shouldn't bother solving the equation { the work here is
just setting up a well-de�ned DE with only the one dependent variable, � (r ).)" {
Travis Norsen

We will consider a small rectangle chunk of gas a radiusr from the center of the star. The
rectangle has a widthdA and a height dr. The mass density in the chunk is� (r ). Gauss'
Law says the gravitational force on the chunk is

F =
GM�dAdr

r 2
(20.28)

whereM is the mass inside of the chunk. The mass is

M =
Z r

0
� (r )4�r 2dr: (20.29)

The pressure di�erence between the top and bottom of the chunk due to the surrounding
gas must exactly cancel out the gravitational force in orderfor there to be equilibrium:

[P(r + dr) � P(r )]dA =
GM� (r )dAdr

r 2
: (20.30)

The idea gas law says that
P(r ) = n(r )kT (20.31)

wheren(r ) is the number density of the gas. we know there is only a radial dependence to
the pressure because of the radial symmetry of the star. The mass density is related to the
number density by � (r ) = mn(r ). Our equilibrium equation becomes

[� (r + dr) � � (r )]
kT
m

dA =
GM� (r )dAdr

r 2
: (20.32)

We note that

� (r + dr) � � (r ) =
d�
dr

dr (20.33)

so our equation becomes

d� (r )
dr

=
Gm
kTr2

� Z r

0
� (r )4�r 2dr

�
� (r ): (20.34)

Rearranging and the di�erentiating both sides of the equation with respect to r gets us

kT
Gm

r 2�
d�
dr

=
Z r

0
� 4�r 2dr (20.35)

kT
Gm

 

2r�
d�
dr

+ r 2

�
d�
dr

� 2

+ r 2�
d2�
dr2

!

= � 4�r 2: (20.36)
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20.4 Problem

\The latent heat (or `heat of fusion') for the ice-water phase transition is 80
calories/gram. What is the probability that a bucket of purewater (no ice) at
zero degrees Celsius spontaneously forms a one gram ice cube?" { Travis Norsen

The heat of fusion is the negative of the energy per unit mass required to convert water to
ice. Thus, to create a gram of ice requires adding to the system Q = � 80 calories. Google
says that Q = 330 J. We know that the change in entropy for this transitionis

� S =
Z

dQ
T

=
Q
T

(20.37)

where we have used the fact that the temperature does not change during the freezing. The
de�nition of entropy is S = k log(
). We know that

P / 
 : (20.38)

Formally, the probability of this transition happening is equal to the number of micro states
for which this is possible divided by the total number of micro states:

P =

 freeze


 total
(20.39)

For our example we have
S0 + � S = k log(
 freeze) (20.40)

Where S0 is the entropy of the liquid with no frozen ice. Thus,

P =
e(S0+� S)=k


 total
=

eS0=ke� S=k


 total
: (20.41)

Now, we know that an overwhelming number of the possible micro states will involve the
whole system in its equilibrium situation where there is just water. In this situation, the
entropy is S0. In equation form, we have

S0 � k log(
 total ) (20.42)

So

 total � eS0=k: (20.43)

Therefore, to good approximation the probability for our initial state to spontaneously form
an ice cube is approximately

P � e� S=k � eQ=kT (20.44)

With Q = 330J , k = 1:38� 10� 23J=K , and T = 273:15K , we have

P � e� 1023
: (20.45)

This is very small!
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20.5 Problem

\In The Physical Universe, Shu discusses the `Missing-MassProblem' on pages
259-60. Summarize what you know about this topic that goes beyond what's in
Shu's (rather outdated) book."{ Travis Norsen

There have been two major developments that I am familiar with. First was the discovery
of gravitational lensing. Studying dark matter with gravitational lensing is kind of like
studying the shape of a piece of glass by looking through it and seeing how the background
is distorted. General Relativity says that that the trajectory of light is bent by the presence
of gravity. Actually, I think we are supposed to say that light still goes in straight lines and
it is instead the structure of space time that gets bent by thepresence of matter.Anyway,
I will wave my hands here because I don't know much General Relativity. By it is fair to
think of light as begin deected by gravity.

Figure 20.1: The shady looking man in the �gure represents dark matter and is supposed to
remind the reader that the jury is still out on what exactly dark matter is made up out of.

The classic example of this is shown in �gure 20.1. It shows a diagram of the most famous
example of gravitational lensing. A star sits behind a bunchof dark matter. The light from
the star leaves isotropically but only particular directions of light will be bent enough to
come back to the earth. What the person on earth sees when he looks into the sky is a ring
of light from the star. These rings are called Einstein ringsand have actually been observed
in the sky.

195



Of course, Einstein rings are seen only when the alignment isvery close to perfect so
they are rare. In real life, we usually only see multiple images of the object. This is enough
information to learn quite a bit about the dark matter lens. This technique where multiple
lenses are involved is called strong gravitational lensingand has been used to learn much
about the structure of heavy clumps of dark matter.

Figure 20.2: The shear correlation of galaxies caused by weak gravitational lensing. Each
of these galaxies are supposed to come from a unique source who's shape is distorted only
slightly.

After strong lensing came weak lensing. Not always will a gravitational lens be so strong
that multiple images are seen. Often,the dark matter will just distort the shape and orien-
tation of a galaxy. The dark matter adds a radial shear correlation to the ellipticity of the
galaxies. Where there are big spots of dark matter in the sky,the galaxies will preferentially
be distributed around the dark matter as in �gure 20.2. By measuring shear correlation, we
can learn about the structure of the dark matter.

This is a statistical technique. Were it not for dark matter,one would have no reason to
believe that there was any correlation between the shapes ofgalaxies. After all, the galaxies
in a particular spot of the sky come from vastly di�erent depths so how could their galactic
evolution have any relation to one another. When we found this correlation, it was very
strong evidence for the existence of dark matter. And now it can be used a method for
mapping out the dark matter in the universe.

It is actually also being used as a way to get better statistics about regular galaxies
in the universe. The fear with gathering statistics about galaxies by spotting them in the
electromagnetic spectrum is that there will be systematic errors associated with what types
of galaxies we will see. When we instead gather statistics about galaxies that we �nd using
gravitational lensing, the thought is that there are fewer systematics involved.

The second major development in the missing mass problem came from an observation
of what is called the bullet cluster. A large challenge facing the theory of dark matter is
the empirical fact that whenever we see dark matter in the sky(either from the velocity
distribution of stars in a galaxy or from lensing), we also see regular matter in the same
place. This lead some to hypothesize that instead of there being mass that we can't see, that
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instead our knowledge of how how gravity works is wrong on thelarge astronomical scales.
Theorist have proposed alternate gravity theories which try to explain the dark matter e�ects
without the need for invisible matter.

Very convincing evidence came out against the viability of modi�ed gravity when scien-
tists found in the sky two galaxies that had collided with each other. What is exciting about
the collision is that it vastly changed the trajectory and the shape of the visible matter. This
can be seen in the electromagnetic spectrum. But the dark matter was relatively una�ected
by the collision and kept going in its normal trajectory. This can be seen by weak lensing.
The dark matter and the regular matter are separated in the sky. The simulations of what
this should look like if dark matter exists look perfectly like the observational data. But it
is very hard to explain this observation with a modi�ed gravity theory.

Another thing. Apparently physicists have �gured out what percentage of the universe
is dark matter. I think it is like 30%. I have no idea how this isdone.

20.6 Problem

\The heat capacity of non-metallic solids at su�ciently low temperatures is pro-
portional to T3. Explain why. Also explain why metals behave di�erently."{
Travis Norsen

The speci�c heat caused by lattice vibrations is of the formc(L )
v = AT 3. The speci�c head

due to the electron gas isc(e)
v = T . The speci�c heat for a non-metallic solid is entirely due

to lattice vibrations and is equal to AT 3. The speci�c heat for a metal is due to both the
electron gas and the lattice vibrations and is therefore equal to T + AT 3.

f

�

� � � kT

1:0

Figure 20.3: The Fermi function for a free electron gas.

We can understand the lattice vibration'sT3 dependence as follows. Rief write down
the Hamiltonian for all of the positive charges in a metal. Hethen describes how we can
do a change of variables to make the Hamiltonian have the formof 3N independent simple
harmonic oscillators. Each of these is a phonon{a matter wave in the metal. Each oscillator
has angular frequency! r and energy� r = ( nr + 1

2)~! r . This is equation 10� 1 � 11 in Rief.
At temperature T, most of our phonons will have energy less thankT. As an equation,

we have~! � kT. The total number of phonons �N will be proportional to the volume in !
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space containing all the phonons (with energy less thankT). The volume is proportional to
! 3 which is proportional to T3. Thus, the average energy is proportional to the number of
states times their energy. This is proportional toT4. Since the energy is proportional toT4,
the speci�c heat (the change in energy versus change in temperature) must be proportional
to T3.

The only thing that could cause a wrinkle in my argument is a fact brought up in Rief
that there is a certain cuto� angular frequency that phononscan not exceed. Since our
upper bound angular frequency is~! � kT, we can safely assume that all of our phonons
will have angular frequency smaller than the cuto�.

We can understand the electron gas'T dependence as follows. We can approximate the
behavior of the electrons in a metal as a free electron gas. Inits lowest energy state, all
the electrons are in the lowest allowed energy states. As thetemperature increases, more
and more electrons begin to occupy higher and higher energy states. Reif proves that for
an electron gas, the probability of a state of energy� being occupied is equal to the Fermi
function f with

F (� ) =
1

e� (� � � ) + 1
: (20.46)

This is equation 9� 16� 4. For relatively small T, we sketch this function in �gure 20.3. We
see that Electrons with energy roughly withinkT of the edge energy� F will move to a higher
energy state. There are roughlyg(� F )kT of these electrons whereG(� ) is the density of levels
per unit volume with energy � . Therefore, the total energy change will be approximately
equal to the number of states times their change in energy:

E � G(� F )kT � kT / T2: (20.47)

We know that the density of levels is a property of the metal inquestion and is not a function
of temperature. The speci�c heat must be proportional to temperature.

20.7 Problem

\Considering the earth as a thermodynamic system, it's clear that over geological
timescales the total energy is (roughly) constant: on average, the earth radiates
heat out into space at the same rate it absorbs heat from the sun. But what about
the second law of thermodynamics? Why doesn't the entropy ofthe earth increase
steadily over geologic timescales? And hence: what fact or facts about the earth
or the universe as a whole is/are ultimately responsible forthe viability of life on
earth?" { Travis Norsen

We know that entropy always goes up. Since the entropy on the earth remains roughly
constant, it must be the case that entropy somewhere else goes up. The increase in entropy
comes from radiation leaving the earth. The light that the sun gives to us is highly ordered
and has a low entropy. The light and heat that the earth radiates is fairly disordered and
has a high entropy. Therefore, we conclude that the only way that life on earth can stay
nice and orderly is by creating a mess somewhere else (outer space).
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Appendix A

How and Why to Think About
Scattering in Terms of Wave-Packets
Instead of Plane-Waves

Travis Norsen, Joshua Lande
Marlboro College, Marlboro, VT 05344

S. B. McKagan
JILA and NIST, University of Boulder, CO, 80309

Abstract

We discuss \the plane wave approximation" to quantum scattering and tunneling using
simple one-dimensional examples. The central point of the paper is that the calculations
of reection and transmission probabilities in standard textbook presentations involve an
approximation which is almost never discussed. We argue that it should be discussed ex-
plicitly, and that doing so provides a simple alternative way to derive certain formulas that
are used in the standard calculations. We also calculate, for a simple standard example,
expressions for theR and T probabilities for an incident Gaussian wave-packet of arbitrary
width. These expressions can be written as a power series expansion in the inverse packet
width. We calculate the �rst non-vanishing corrections explicitly.

A.1 Introduction

Scattering is arguably the most important topic in quantum physics. Virtually everything we
know about the micro-structure of matter, we know from scattering experiments. And so the
theoretical techniques involved in predicting and explaining the results of these experiments
play a justi�ably central role in quantum physics courses atall levels in the physics cur-
riculum, from Modern Physics for sophomores through Quantum Field Theory for graduate
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students.

Given the importance and centrality of this topic, we shouldbe particularly careful about
clarifying its physical and conceptual foundations { both for ourselves and for our students.
It is the main contention of this paper that these foundations are not typically as clear as they
could be. The speci�c problem we address is the fact that the scattering particle is almost
always described as a (suitably modi�ed) plane-wave, rather than a physical, normalizable,
�nite-width wave-packet. As we will explain in the following section, this standard plane-
wave account is fraught with conceptual problems which havebeen documented to cause
confusion and errors among students, and which may also cause confusion among experts.

In the following section, we present a simple alternative way of deriving certain formulas
(which play a central role in the calculation of various scattering probabilities and which are
usually justi�ed in a complicated and confusing way in the context of the plane-wave account
of scattering) from a straightforward analysis of the kinematics of wave-packets. We thus
demonstrate that many of the conceptual problems associated with the plane-wave analysis
(and some pointless mathematical complications, to boot) can be quite simply avoided { all
while preserving the mathematical simplicity and accessibility of the standard plane-wave
calculation.

In subsequent sections, we present what we believe (surprisingly) to be some novel calcu-
lations of the scattering probabilities when the incident particle is represented by a Gaussian
wave-packet. The novelty consists in exact expressions forthe reection and transmission
(R and T) probabilities: these can be expanded in powers of the inverse packet width, and
the individual terms can be calculated analytically. We thus show explicitly that the usual
plane-wave expressions forR and T emerge in the limit of an in�nitely-wide packet.

That, of course, is no surprise. But often (in that small minority of texts which even
discuss it) the wave-packet analysis is presented as an afterthought { e.g., a more physically
and conceptually realistic way of re-deriving the plane-wave expressions forR and T. This
conveys the impression that the wave-packet analysis is only a sort of heuristic, with the
\really correct" plane-wave results emerging when one takes the packet width to in�nity.
But this impression is both false and dangerous. The really correct probabilities are the
ones based on the actual properties of incident particles, and these will always be properly
represented as �nite-width wave-packets. It is the plane-wave expressions which are an ap-
proximation to the wave-packet probabilities, not vice versa. There is thus harmony between
the mathematical and the conceptual: the thing that is properly regarded as fundamental
(both conceptually and in terms of providing the rigorouslyexact predictions for experi-
ments) is wave-packets. Hence our conclusion: it is in termsof wave-packets that we should
think about scattering ourselves, and introduce scattering to students.
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A.2 The plane-wave account and its problems

Most students �rst encounter the quantum mechanical treatment of scattering with the
simple example of a 1-D particle incident on a potential step:

V(x) = V0 � (x) =
�

0 for x < 0
V0 for x > 0

: (A.1)

We will base most of our discussion on this example, though, as will be obvious, most of
what we have to say applies to scattering problems in general.

The familiar calculation ofR andT probabilities for the potential step proceeds as follows.
One �nds solutions to the time-independent Schr•odinger equation

�
~2

2m
 00(x) + V(x)  (x) = E  (x) (A.2)

valid on the two sides of the origin:

 k(x) =
�

Aeikx + Be� ikx for x < 0
Cei�x + De� i�x for x > 0

(A.3)

where

� 2 = k2 �
2mV0

~2
= k2 � p2: (A.4)

Then, citing as an initial condition that particles be incident from (let us say) the left, one
argues on physical grounds that the coe�cientD (describing particle ux incident from the
right) should vanish, leaving

 k(x) =
�

Aeikx + Be� ikx for x < 0
Cei�x for x > 0

: (A.5)

where one interprets theA term as representing incident ux,B as the reected ux, and C
as the transmitted ux.

A number of conceptual problems associated with the plane-wave analysis are already
manifest. Several features of the argument (such as writingthe most general solution of the
Schr•odinger equation in terms of complex exponentials rather than sines and cosines, and the
elimination of the D term) are based on a certain intuitive physical picture of the scattering
process: particles propagate in from the left, reect or transmit at x = 0, and subsequently
propagate out to the left or right. The fact that the particles propagatesuggests the complex
exponentials, and the fact that particles can never be propagating to the left in the x > 0
region warrants settingD = 0.

But rigorously speaking, Equation A.5 and the intuitive physical picture we partially
based it on, are in conict. For example, according to Equation A.5, there is never a time
when the particle was de�nitely incident from the left (and hence no real argument that
it shouldn't be in the x > 0 region moving to the left). Another way to say this is that
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the physically realistic initial condition we had in mind (that once upon a time there was a
particle approaching the step with some de�nite width, position, and speed) is inconsistent
with the wave function we actually write down: the latter represents a particle which is
in�nitely spread out through all of space and which as been forever, timelessly reecting and
transmitting from the barrier. The standard argument thus muddles together two distinct
steps { setting up the initial conditions and �nding a solution. This may seem e�cient, since
it is di�cult to write down a general solution without alread y having in mind the idea of an
initially-incident propagating plane-wave. But what experts perceive as e�cient, students
�nd confusing.

Experts are probably also used to thinking of the timeless, steady-state wave function as
some kind of limit for an in�nitely-wide incident packet. But how exactly this limit works
is unclear, even to most experts. We will show in the subsequent section that it is actually
quite straightforward to understand { so simple in fact that we advocate introducing it to
students from the very beginning and thus avoiding completely the kinds of issues being
raised here.

Let us continue now sketching and critiquing the standard plane-wave analysis of this
problem.

Equation (A.5) actually solves Equation (A.2) atx = 0 only if  and  0 are continuous
at there. Imposing these conditions gives the following familiar expressions relating the
amplitudes of the incident, reected, and scattered waves:

B
A

=
k � �
k + �

(A.6)

and
C
A

=
2k

k + �
: (A.7)

Note that even writing down equations A.6 and A.7 requires recognizing that the value of A
is an arbitrary initial condition which then sets the valuesof B and C. In working through
this derivation with students, we have observed that while students have no trouble verifying
that these equations are true, they are often ba�ed by why we choose to write them down
in the �rst place. Writing these particular equations also anticipates an ultimate goal of
deriving the reection and transmission probabilitiesR and T, a goal which is often not
obvious a priori to students.

Further, even when it is clari�ed that the goal is to deriveR and T, it is not entirely clear
how to proceed, unless one is already familiar with the derivation. According to the standard
probability interpretation of the wave function, the reection and transmission probabilities
should be given by the area under the reected and transmitted part of j j2, respectively,
divided by the area under the incident part ofj j2. Since all these areas are in�nite, one
can't calculate the reection and transmission probabilities as one would naively expect.
However, it is quite tempting (and quite wrong) to assume that the in�nite widths simply
cancel and that the reection and transmission coe�cients are given by:

R = jB j2=jAj2 (A.8)
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and
T = jCj2=jAj2 (A.9)

We have observed that this is a common mistake for students tomake, but most textbooks
do not address it. The actualR and T values are proportional not to the ratio of probability
densities (associated with the appropriate outgoing and incident part of the wave), but of
the probability densities times the group velocities, or equivalently, times the wave numbers:

R =
vg(k)jB j2

vg(k)jAj2
=

kjB j2

kjAj2
=

jB j2

jAj2
=

�
k � �
k + �

� 2

(A.10)

and

T =
vg(� )jCj2

vg(k)jAj2
=

� jCj2

kjAj2
=

4k�
(k + � )2

: (A.11)

where

vg(k) =
d! (k)

dk
=

~k
m

: (A.12)

Here ! (k) = E(k)=~ = ~k2=2m. One can verify that R + T = 1.
Many textbooks simply write down Equations A.10-A.11 without explanation, or worse,

avoid them altogether by skipping the step potential and going straight to tunneling through
a square barrier, using Equations A.8-A.9 without mentioning that they happen to be cor-
rect only for the special case where the wave numbers are equal on both sides. At least one
textbook even writes down Equation A.8 as the obvious expression forR, and then \derives"
the correct expression for T by stating that it follows from the convention that R + T = 1!
This is bad because it deliberately hides an important issuethat should be confronted explic-
itly. But, one might think, at least it's mathematically val id. But even that is questionable:
with the plane-wave scattering state (which is timelessly,simultaneously incident, reected,
and transmitted) why should it be true that R + T = 1? At any particular moment (no
matter how far in the future) it seems quite possible that theparticle is neither reected
nor transmitted but it rather still incident. And so practic ally every mathematical step is
clouded by physical assumptions which are at odds with the actual mathematics.

The vast majority of QM textbooks justify Equations A.10-A.11 by introducing the
probability current

j =
� i~
2m

�
 � @ 

@x
�  

@ �

@x

�
(A.13)

which describes the ow of quantum mechanical probability,as proved by the fact that the
time-dependent Schr•odinger equation entails the continuity equation

@�
@t

+
@j
@x

= 0 (A.14)

with � = j j2 the standard expression for probability density in the theory.
For a plane wave with = Aeikx , Equation A.13 gives the probability current:

j =
~k
m

jAj2 (A.15)
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which equals the probability densityjAj2 times the group velocity de�ned previously.
These textbooks state, usually with little explanation, that the reection and transmission

coe�cients are given by the ratios of the individual probability currents for the reected and
transmitted terms to the incident current:

R =
jj R j
j I

(A.16)

and

T =
j T

j I
: (A.17)

where j I � kjAj2 is the probability current for the incident wave function  I = Aeikx , and
analogouslyj R � � kjB j2 and j T � � jCj2.

Equations A.16-A.17 and the resulting Equations A.10-A.11can be understood somewhat
intuitively by arguing that if the incoming and transmitted waves are traveling at di�erent
speeds, then it makes sense that the amount transmitted should be proportional to the
ratio of the speeds. However, it is di�cult to make a rigorous, rather than hand-waving,
argument for why, a priori, Equations A.16-A.17 are the correct expressions for the reection
and transmission coe�cients.

It is also di�cult to intuitively relate the probability cur rent approach to the interpreta-
tion of the probability as the area under the curve. Furthermore, it is not intuitively clear
why the relevant speed to use is the group velocity,d!=dk , rather than the phase velocity,
!=k . In fact, if students investigate an animation of plane wavemotion by writing a com-
puter program or using a simulation1, only the phase velocity will be apparent to the eye.
Furthermore, while the the group velocity of the transmitted wave is smaller than that of
the incident wave, the phase velocity will actually be larger, so it is quite easy to develop
incorrect intuitions based on the behavior of plane waves. It is quite di�cult to get an intu-
itive sense of the group velocity of a plane wave at all, unless one thinks of it as an in�nitely
wide wave packet, in which case one can imagine the group velocity as the speed with which
this entire packet moves through space. In fact, thinking ofvery large wave packets seems
to be the only way to gain an intuitive sense of plane waves at all { as we will argue in more
detail subsequently.

Thus, although the ratio of probability currents does give the correct answer it is far from
clear to students (and no doubt many experts) why this shouldbe. Moreover, probability
current is a sophisticated concept, which is typically introduced solely for the purpose of
deriving the formulas forR and T. Introducing such a concept in the middle of a derivation
places extra cognitive load on students, increasing the likelihood that they will give up on
understanding and just accept the results \on faith," as magic formulas to be memorized
and used without comprehension.

Further, the same fact that makes this detour into probability currents necessary { that
we are dealing with unphysical plane-wave states { can causefurther conceptual di�culties,

1See, for example, the PhET simulation Quantum Tunneling and Wave Packets:
http://phet.colorado.edu/new/simulations/sims.php? s im=quantumtunneling
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as shown by physics education research on this topic [7]. Plane waves are mathematically
simple. But they completely fail to capture the inherently time-dependent processes that
they are being used to describe. For example, we say that a particle approaches a barrier
from the left, and then part of it is transmitted and part of it is reected. The language
we use to talk about scattering processes matches the physical processes themselves (e.g.,
in a real experiment, particles are shot toward a target at a certain time and emerge in
some direction or other at some later time) { but there is a deep disconnect between, on
the one hand, the language and the physical processes and, onthe other hand, the quantum
mechanical description in terms of plane-waves.

In summary, the analysis of 1-D scattering in terms of plane wave states, although math-
ematically simple, requires enough overhead and raises enough conceptual di�culties that
the central physical lessons are signi�cantly obscured. Wouldn't it be nice if there were some
way of treating this topic that (a) didn't require the overhead of probability current and (b)
forced students to think, from the very beginning, that we are really dealing with physical,
normalizablewave packetsto which the plane waves are merely a convenientapproximation?

Such an approach will be outlined in the following section. In later sections we present
also techniques for calculating and approximatingR and T probabilities when the incident
particle is represented by a gaussian wave packet. These techniques are probably too ad-
vanced for students in an introductory course. But our hope (and reason for including them
here) is that they may help teachers of quantum physics to realize, fully and explicitly, that
the plane wave formulas { e.g., Equations (A.10) and (A.11) {are approximations, which
are \good" (only) in a certain, intuitively sensible range of physical situations (having to do
with the width of the incident packet relative to other length scales in the problem). This
perspective is clarifying, and may help repair and prevent the sorts of di�culties mentioned
above.

A.3 Scattering probabilities and packet widths

x = 0

V(x) = V0

w

 = Aeik 0 x

V (x) = 0

Figure A.1: A Caption Needs to Go Here...

Consider a wave packet approaching the \scattering target"at x = 0 for the potential
de�ned in Equation (A.1). Figure A.1 is a diagram of this setup. Assume the packet has
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an almost-exactly constant amplitude (A) and wavelength (� 0 = 2�=k 0) in the region (of
width wI ) where the amplitude is non-vanishing, as shown in the Figure. Thus, where the
amplitude is non-zero, the packet will be well-approximated by a plane wave:

 = A eik 0x : (A.18)

We may assume this incident packet is normalized, so thatwI jAj2 � 1.
What happens as the packet approaches and then interacts with the potential step at

x = 0? To begin with, the packet retains its overall shape as it approaches the scattering
center (that is, we assume that the inevitable spreading of the wave packet is negligible on
the relevant timescales). It simply moves at the group velocity corresponding to the central
wave number for the regionx < 0:

v<
g =

~k0

m
: (A.19)

We then divide the process into the following three stages:

� The leading edge of the packet arrives atx = 0

� The constant-amplitude \middle" of the packet is arriving at x = 0

� The trailing edge of the packet arrives atx = 0

Suppose the leading edge arrives at timet1. Then the trailing edge will arrive at t2 satisfying

t2 � t1 = wI =v<
g = wI m=~k0: (A.20)

And for intermediate times, t1 < t < t 2, we will have { in some (initially small, then bigger,
then small again) region surroundingx = 0 { essentially the situation described in Equation
(A.5), namely: a superposition of rightward- and leftward-directed plane waves (just to the
left of x = 0) and a rightward-directed plane wave with a di�erent wave number (to the
right). And the same relations derived in the previous section for the relative amplitudes of
these three pieces will still apply.

While crashing into the scattering center, the incident packet \spools out" waves { with
amplitudes B and C given in Equations (A.6) and (A.7) { which propagate back to the left
and onward to the right, respectively. These scattered waves will also be wave packets, with
the leading edges of the reected and transmitted packets formed at time t1 and the trailing
edges of the reected and transmitted packets formed at timet2.

This gives a very simple and illuminating way toderive Equations (A.10) and (A.11).
Consider �rst the reected packet. The probability of reection, R, is by de�nition just its
total integrated probability density { which here will be it s intensity jB j2 times its width
wR . But the width of the reected packet will be the same as the width of the incident
packet: because these two packets both propagate in the sameregion, they have the same
group velocity, so the leading edge of the reected packet will be a distancewI to the left of
x = 0 when the trailing edge of the reected packet is formed. Thus, we have

R = wR jB j2 = wI jB j2 �
jB j2

jAj2
(A.21)
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where we have used the normalization condition for the incident packet wI jAj2 � 1.
Similarly, the total probability associated with the transmitted wave will be its intensity

jCj2 times its width wT . But wT will be smaller than wI because the group velocity on the
right is slower than on the left. In particular: the leading edge of the transmitted packet
is created att1; the trailing edge is created att2; and between these two times the leading
edge will be moving to the right at speed

v>
g =

~� 0

m
(A.22)

where � 2
0 = k2

0 � p2 is the (central) wave number associated with the transmitted packet.
Thus, the width of the transmitted packet { the distance between its leading and trailing
edges { is

wT = v>
g (t2 � t1) =

� 0

k0
w (A.23)

and so the transmission probability is

T = wT jCj2 �
� 0jCj2

k0jAj2
(A.24)

in agreement with Equation (A.11).
To summarize, one can derive the correct general expressions for R and T merely by

considering the kinematics of wave packets, without ever mentioning probability current. In
particular, the perhaps-puzzling factor of� 0=k0 in the expression forT has an intuitive and
physically clear origin in the di�ering widths of the incident and transmitted packets, which
in turn originates from the di�ering group velocities on thetwo sides.

This route to the important formulas is actually simpler than the one traditionally taken
in introductory quantum texts: there is a clearly de�ned initial condition and a de�nite
process occuring in time; probability only enters in the standard way (as an integral of
the probability density j j2); and the two quantities needed to de�ne the probabilities (the
packet widths and amplitudes) are arrived at separately andcleanly. This approach thus
has several virtues in addition to simplicity. First, with proper guidance, focusing on wave
packets and a dynamical process in which something (namely scattering) actually happens
in time can help students think about the physical processphysically and/or to connect
the mathematics up with real examples. Second, thinking in terms of wave packets can
help students recognize that the formulas developed above for reection and transmission
probabilities (and this point applies equally well to three-dimensional scattering situations)
are approximations and to understand when those approximations do and do not apply.

In particular, the argument presented here suggests that the precise mathematical ex-
pressions forR and T above will apply only in the limit of very wide incident packets. This
has several aspects. First, we are justi�ed in neglecting the dynamical spreading of the
wave packet (and hence, e.g., treating the reected packet as having the same width as the
incident packet) only if the speed of spreading is less than the group velocity, that is, if
� k << k 0, where � k � 1=� x � 1=wI is the width of the incident packet in k-space. This
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implies that wI >> � 0, in other words, that the width of the wave packet is much larger
than the characteristic wavelength in the region where the amplitude is non-vanishing.

Further, the plane-wave style derivation of the amplitudesassumes that, for some time
interval (roughly, t1 < t < t 2), the wave function's structure in some (variable) spatialregion
around x = 0 is indeed given by Equation A.5. But these conditions willsimply fail to
apply if the actual wave function is (in the appropriate space and time regions) insu�ciently
plane-wave-like, e.g., if the amplitude of the wave varies appreciably over a length scale
� 0 = 2�=k 0. Thus (assuming a smooth spatial envelope for the packet) the formulas will be
valid in the limit wI � 0, which is mathematically equivalent to the limit noted previously.

A.4 Gaussian wave packet scattering from a step po-
tential

It is possible to work out the exact R and T probabilities for a Gaussian wave packet
incident on the potential step of Equation (A.1). Most of thederivation is worked out in
several texts [1, 11], though invariably these texts fail to write down the exactexpressions for
R and T and instead make last-minute approximations which result in the plane wave results
developed previously. But it is worth pushing through the calculation to the end, if only to
illustrate that there is an exact result to which the plane wave formulas are approximations.
Having the exact result in hand also allows one to analytically pick o� explicit expressions
for �rst non-vanishing corrections to the plane wave result. That the corrections are small
in precisely the limits discussed at the end of the previous section, is a nice con�rmation of
that discussion.

We begin with an incident Gaussian wave packet, with centralwave numberk0 and width
� and centered, att = 0, at x = � a:

 (x; 0) = ( �� 2)� 1=4eik 0 (x+ a)e� (x+ a)2 =2� 2
(A.25)

We then follow Shankar's text and proceed in four steps.
Step 1 is to �nd appropriately normalized energy eigenfunctions for the step potential.

These may be parametrized byk and are (up to normalization) just the plane wave states
given previously:

 k(x) =
1

p
2�

��
eikx +

B
A

e� ikx

�
� (� x) +

C
A

ei�x � (x)
�

(A.26)

where, as before,� 2 = k2 � 2mV0=~2 and B=A and C=A are to be interpreted as thefunctions
of k given by Equations (A.6) and (A.7). The overall factor of 1=

p
2� out front is chosen so

that Z
 �

k0(x) k(x)dx = � (k � k0): (A.27)

We are here assuming that only eigenstates with energy eigenvaluesE = ~2k2=2m > V0 will
be present in the Fourier decomposition of the incident packet (and hence we fail to make
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explicit special provision for those k for which � is imaginary). Note also that there are two
linearly independent states for eachE only one of which is included here. The orthogonal
states will have incoming, rather than outgoing, plane waves for x > 0; such states will never
enter given our initial conditions.

Step 2 is to write the incident packet as a linear combinationof the  ks:

 (x; 0) =
Z

 k(x) � (k; 0) dk (A.28)

where (assuming� << a so the amplitude of the incident packet vanishes forx > 0)

� (k; 0) =
�

� 2

�

� 1=4

e� (k� k0)2 � 2=2eika (A.29)

turns out to be the ordinary Fourier Transform of (x; 0).
Step 3 is to write  (x; t ) by appending the time-dependent phase factor to each of the

energy eigenstate components of (x; 0):

 (x; t ) =
Z

 k(x) � (k; t) dk

=
Z

 k(x) � (k; 0) e� iE (k)t=~ dk

=
�

� 2

4� 3

� 1=4 Z
e

� i ~k 2 t
2m e

� ( k � k 0 ) 2 � 2

2 eika �
�
eikx � (� x) +

�
B
A

�
e� ikx � (� x) +

�
C
A

�
ei�x � (x)

�
dk:

We can then �nally { Step 4 { analyze the three terms for physical content. The �rst
term, aside from the� (� x), describes the incident Gaussian packet propagating to the right.
For su�ciently large times (when the incident packet would have support exclusively in the
region x > 0) the � (� x) kills this term { i.e., the incident packet eventually vanishes.

The second and third terms describe the reected and transmitted packets, respectively.
If the factors (B=A) and (C=A) were constants, we would have Gaussian integrals which we
could evaluate explicitly to get exact expressions for the reected and transmitted packets
{ which would themselves, in turn, be Gaussian wave packets which could be (squared and)
integrated to get exact expressions for theR and T probabilities. However, these factors are
functions ofk. It is not unreasonable to treat them as roughly constant over the (remember,
quite narrow) range ofk where � (k; 0) has support. This is the approach taken by Shankar
(and, at least by implication, several other texts) and the result is precisely the plane wave
expressions forR and T we developed earlier.

But another approach (which, surprisingly, we have not found in the literature) is also
appealing. Consider the second and third terms of Equation (A.30) { which represent (for
late times when these terms are non-vanishing) the reectedand transmitted packets. These
can be massaged to have the overall form (again assumingt su�ciently large that the �
factors can be dropped)

 R=T (x; t ) =
Z

eikx

p
2�

� R=T (k; t) dk: (A.30)
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Putting the two terms in this form requires a change of variables { from k to � k for the
R term, and from k to

p
k2 � p2 for the T term. The resulting expressions for thek-space

distributions of the reected and transmitted packets are:

� R(k; t) =
�

� 2

�

� 1=4

e
i ~k 2 t

2m e
� ( k + k 0) 2 � 2

2 e� ika

�
k + �
k � �

�
(A.31)

and

� T (k; t) =
�

� 2

�

� 1=4

e
� i ~( k 2 + p2) t

2m e
� (

p
k 2+ p2 � k 0 ) 2 � 2

2 � eika

 
2
p

k2 + p2
p

k2 + p2 + k

!
k

p
k2 + p2

: (A.32)

But we can just as well integrate the momentum-space wave functions (to �nd the total
probability associated with a given packet) as the position-space wave functions. Thus,

R =
Z

j� R(k; t)j2 dk

=
�

� 2

�

� 1=2 Z
e� (k+ k0)2 � 2

�
k + �
k � �

� 2

dk

=
�

� 2

�

� 1=2 Z
e� (k� k0)2 � 2

�
B
A

� 2

dk (A.33)

where in the last step we have done another change of variables from k to � k. This result
can be summarized as follows:

R =
Z

P(k)Rkdk (A.34)

whereP(k) = j� (k; 0)j2 is the probability for a given k associated with the incident packet,
and Rk is simply the reection probability for a particular value of k as expressed in Equation
A.10.

The analogous result for theT term emerges after some more convoluted algebra:

T =
Z

j� T (k; t)j2 dk

=
�

� 2

�

� 1=2 Z
e� (

p
k2+ p2 � k0)2 � 2

�

 
2
p

k2 + p2
p

k2 + p2 + k

! 2
k2

k2 + p2
dk

=
�

� 2

�

� 1=2 Z
e� (k� k0)2 � 2

�
C
A

� 2 �
k

dk

=
Z

P(k)Tkdk: (A.35)

where in the next-to-last step we have made a change of variables (back!) fromk to
p

k2 + p2.
These expressions are exact (subject to the assumptions noted earlier). Note that, if we

treat (B=A)2 and (C=A)2(�=k ) as constants that do not depend onk (i.e., if we approximate
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these functions by their values atk = k0, which is a good approximation so long as as the
functions don't vary appreciably in a region of width 1=� around k0, i.e., if the width � of
the incident packet is very big) we are left with plain Gaussian integrals that can be done
to get back the plane-wave-approximation results we started with: R = ( B=A)2 evaluated
at k = k0, etc.

Unfortunately, the actual integrals are too messy to do exactly. But we can Taylor expand
the (B=A)2 and (C=A)2(�=k ) factors aroundk = k0 to get a series of integrals that can be
done, resulting in a power-series expansion (in inverse powers of the packet widthw) of the
exact R and T. approximations ofR and T.

The �rst two non-vanishing terms for R and T are as follows:

R =
�

k0 � � 0

k0 + � 0

� 2

+
�

2k0

� 3
0

+
8
� 2

0

� �
k0 � � 0

k0 + � 0

� 2 1
� 2

+ � � � (A.36)

and

T =
4k0� 0

(k0 + � )2
�

�
2k0

� 3
0

+
8
� 2

0

� �
k0 � � 0

k0 + � 0

� 2 1
� 2

+ � � � (A.37)

We propose christening as \the plane wave approximation" the large-� limit of these exact
results.

A.5 Discussion

Things to discuss here:

� Respond to the possible objection that \of course" the real R/T probabilities areR
P(k)Rkdk, etc. This objection presupposes that it is meaningful to de�ne R and T

for plane wave states, which it is really the fundamental point of our paper to deny.
So it's a good opportunity to clarify.

� Discuss the generalization of thisR =
R

P(k)Rkdk type result. What if P(k) has
support for k's where funny things happen, e.g., the associated � goes imaginary?
Does it apply to square barrier tunneling? Or is there something special about this
potential step example that makes this work out so nicely? And does it only apply for
Gaussian packets, or is it really really general?

� Discuss \real life" JILA type experiments where the plane-wave approximation is bad,
and lobby for talking about these with students in order to help motivate the wave-
packet approach.

� Figure out some better way of integrating the two main sections here, so that they
both become parts of one coherent argument.
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